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Abstract 

 The purpose of this Milwaukee School of Engineering (MSOE) Master of Science 
in Engineering (MSE) Capstone Project Report is to present the results of a project 
featuring a multi-degree-of-freedom planar model of a motorcycle with an isolated 
powertrain to investigate the sensitivity of ride comfort to the rear powertrain mounting 
system with a specific focus on the mounting system’s stiffness, position, and damping. 
All models were developed in MATLAB to solve for natural frequencies, mode shapes, 
displacement transmissibility, and power spectral density (PSD) acceleration. The 
changes to PSD acceleration for the aspects of the model most relevant to ride comfort, 
i.e. sprung mass bounce and sprung mass pitch, were investigated. Results indicate that 
the behavior of the PSD acceleration results for sprung mass bounce and sprung mass 
pitch fall within expectations based on prior literature. Additionally, investigations into 
stiffness variation show a notable decrease in maximum PSD acceleration for sprung 
mass bounce with inconclusive results for sprung mass pitch. Moving the rear isolator 
down and away from the powertrain center of gravity (COG) results in a comparatively 
smaller decrease in maximum sprung mass bounce PSD acceleration, but sprung mass 
pitch shows a uniform decrease. Damping increases show the greatest amount of 
maximum PSD acceleration decrease for both sprung mass pitch and sprung mass 
bounce. Finally, four combinations of damping and stiffness parameters feature 
conflicting results for the significance of stiffness and damping contributions to reducing 
PSD acceleration for the sprung mass. The investigation into the above areas needs to be 
expanded in the future to validate results with experimental data and by investigating the 
full behavior changes to PSD acceleration plots, as opposed to solely inspecting PSD 
acceleration maxima; this will capture changes to other peaks and bandwidths that may 
impact qualitative and quantitative assessment of ride comfort. Additionally, the model 
can be augmented with a representation of specific rider interfaces such as hands, feet, 
and torso, along with investigations into different parameters, such as varying vehicle 
speed and different road input types. Such an analytical model in conjunction with 
experimental validation will provide a more complete understanding of the ride comfort 
sensitivity to the rear powertrain mounting system. 
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Nomenclature 

Symbols 

b = Distance from Rear Tire Contact Point to Center of Gravity 

cf = Front Suspension Equivalent Vertical Linear Damping  

cr = Rear Suspension Equivalent Vertical Linear Damping 

c1fx = Front Isolator Equivalent Horizontal Damping Coefficient 

c1fy = Front Isolator Equivalent Vertical Damping Coefficient 

c1rx = Rear Isolator Equivalent Horizontal Damping Coefficient 

c1ry = Rear Isolator Equivalent Vertical Damping Coefficient 

I = Mass Moment of Inertia for Sprung Mass 

kf = Front Suspension Equivalent Vertical Stiffness Coefficient 

kpf = Front Tire Equivalent Stiffness Coefficient 

kpr = Rear Tire Equivalent Stiffness Coefficient 

kr = Rear Suspension Equivalent Vertical Stiffness Coefficient 

k1fx = Front Isolator Equivalent Horizontal Stiffness Coefficient  

k1fy = Front Isolator Equivalent Vertical Stiffness Coefficient 

k1rx = Rear Isolator Equivalent Horizontal Stiffness Coefficient  

k1ry = Rear Isolator Equivalent Vertical Stiffness Coefficient 
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m = Mass - Sprung Mass 

mf = Mass – Front Unsprung Mass 

mr = Mass – Rear Unsprung Mass 

p = Wheelbase 

xp = Powertrain Horizontal Translation 

xr = Rear Unsprung Mass Horizontal Translation 

y = Sprung Mass Vertical Translation 

yf = Front Unsprung Mass Vertical Translation – Front unsprung mass hop 

yp = Powertrain Vertical Translation 

yr = Rear Unsprung Mass Vertical Translation – Rear unsprung mass hop 

γ = Powertrain Pitch 

θ = Sprung Mass Pitch 

 

Abbreviations 

COG – Center of Gravity 

DOF – Degree-of-Freedom 

EOM – Equation of Motion 

FRF – Frequency Response Function 
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PSD – Power Spectral Density 

VDV – Vibration Dose Value 
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Introduction 

The subject of rider comfort with respect to motorcycle dynamics is an active 

field of research. Existing studies in ride comfort analysis range from investigations into 

the influence of linear and nonlinear engine isolation versus rigidly mounted engines by 

Kaul [1, 2] to correlating physical road input vehicle data collection with rigid-flexible 

coupling simulations [3]. This project’s purpose is to build upon the understanding of the 

in-plane dynamics of a motorcycle with an isolated powertrain. Specifically, the focus of 

the project is to understand the influence of the rear vibration isolation system’s stiffness, 

position, and damping characteristics on the planar dynamics relating to ride comfort 

behavior of a motorcycle under random road inputs. 

The report is organized as follows. A background is provided on the investigation 

addressed with a summary of the work carried out prior to this analysis as well as a 

description of important issues relating to the topic of investigation. A brief literature 

review then discusses how others have addressed the topic. Following the background, 

the methods of model development, verification, and analysis are provided in detail. 

Results for the eight-degree-of-freedom (DOF) model are then presented and discussed, 

followed by a conclusion that summarizes the work completed with details on potential 

continuations of research in this area. 

 

Background 

Motorcycle dynamic modeling can be divided into two broad categories: in-plane 

analysis and out-of-plane analysis. In-plane models are typically applied to investigate 

ride comfort of the vehicle with road irregularities as the primary inputs. The in-plane 
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models that exist today can range from simplified representations of two-wheeled 

vehicles to relatively more complex models for vehicles such as those with isolated 

powertrains [1]. Additionally, models have been developed to capture dynamics at key 

rider interfaces such as hands, feet, or torso to gain a better understanding of ride comfort 

in those areas [4]. Out-of-plane models are typically applied to investigate vehicle 

handling, maneuverability, and stability. 

Ride comfort analysis with in-plane, or planar, models has historically been 

applied to target numerical and subjective requirements [4]. Such requirements are based 

on the intended purpose of the vehicle. For instance, a vehicle that is intended for long 

highway miles will likely hold ride comfort requirements in higher regard compared to a 

sport vehicle that is intended for achieving competitive lap times on-track [4]. 

Commercial manufacturers apply different techniques to mitigate ride comfort concerns, 

which can range from suspension optimization to mitigating shaking forces from the 

powertrain through balancing or through powertrain isolation from the chassis [1]. 

Powertrain isolation in motorcycles often involves mounting the powertrain to the 

frame of the vehicle through different combinations of isolators at the front and rear of 

the powertrain [1]. The influence of isolator stiffness, position, and damping on the road 

irregularity responses are important characteristics to understand for both the in-plane 

and out-of-plane dynamics of a motorcycle. Additionally, an independent understanding 

of components, such as vibration isolator planar behavior, can benefit vehicle 

performance trouble-shooting and full-vehicle dynamic simulation efforts [5]. For 

instance, multi-body dynamics models of motorcycles can be developed in existing 

software such as BikeSim (Mechanical Simulation) and FastBike (Dynamotion) [4]. Such 
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programs can be beneficial resources during the design and analysis of the vehicle. 

However, if an issue is present with vehicle performance, identifying the design 

parameters that would be beneficial to modify may be challenging with the BikeSim and 

FastBike programs as their use for component-level analysis is limited relative to their 

uses for full-vehicle dynamic analysis [1]. Similarly, general multi-body dynamics 

software, such as Altair MotionSolve, can be applied to represent dynamic events through 

established building blocks within the program [1]. However, a deeper engineering 

understanding of component-level behavior, beyond the provided building blocks, is 

often beneficial in refining the model and integrating the component-level characteristics 

with the system level model. This engineering understanding can be applied through 

additional logic imported into a general multi-body dynamics model. In the case of 

vibration isolator influence, the model and understanding of isolator behavior could then 

be applied to a broader multi-body dynamics model to better predict vehicle ride comfort 

[6]. 

  

Literature Review 

Gonçalves and Ambrosio [6] proposed a method for flexible multibody models 

which represent complex bodies using general finite element methods. The model is 

applied for road vehicles. Multiple road profiles are used with different speeds to cover a 

broad set of conditions a vehicle would typically undergo during normal operation. Ride 

comfort ratings for the modeled vehicle are established through weighted values 

representing the importance of each respective vibration relative to distinct frequency 

ranges. The range critical for ride comfort analysis is 0 to 25 Hz, where vibrations within 
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this range are described as tactile and visual. This vibration range and weighting scale, 

based on information from ISO 2631, is then applied to key interfaces between the 

passenger and the vehicle: feet, hands, and torso. Vibrations higher than 25 Hz are 

classified as noise and are not included in the ride comfort evaluation. The weighting 

analyses of each frequency are then combined to produce an overall vibration dose value 

(VDV). The resulting model is not compared to experimental data but does demonstrate 

the effectiveness of a multibody model in efficiently optimizing suspension 

characteristics and frame stiffness for vehicle ride comfort. 

A method has been established by Cossalter et al. [4] for evaluating the ride 

comfort of a motorcycle within the frequency domain. The focus of the paper is around 

road irregularities causing vertical displacements of the front and rear wheels, which in 

turn impact suspension, chassis, and rider. Additionally, the model proposed by Cossalter 

et al. [4] includes wheelbase filtering, which accounts for a delay between the contact of 

the front tire and the rear tire with road irregularities. Engine shaking forces and other 

sources of excitation are not considered in this study. The road irregularities cause 

vibrations through the mechanical systems of the motorcycle, resulting in accelerations 

that are perceived by the rider. To evaluate sprung mass vibrations resulting from the road 

profile, three frequency ranges are applied by Cossalter et al. as follows: “the quasi-static 

range (frequency v < 0.5 Hz), the ride range (0.5 < v < 20 Hz) and the acoustic range (20 

< v < 20 000 Hz)” [4]. These ranges are notably similar to those presented by Gonçalves 

and Ambrosio as both papers cite ISO 2631 as a primary source for understanding 

comfort levels relative to vibration and frequency ranges [4, 6]. The proposed model 

determines the PSD of the motorcycle seat acceleration over random road profiles. 
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Additionally, missions, or the “journeys with a forward speed that assumes different 

values according to a probability density function” [4] are applied to take the influence of 

varying vehicle speed into account in an efficient manner. 

 A model has been developed by Kaul [7] intended for the non-linear analysis of 

mechanical snubbing in elastomeric isolators. Three degrees-of-freedom are proposed for 

the system: lumped mass vertical translation, fore-aft translation, and pitch. This model 

captures the strain rate and strain amplitude dependence of the snubbing system and 

shows general agreement with experimentally collected load-displacement data from a 

test rig. The model could be applied to optimize system behavior such as transmitted 

forces of an isolated powertrain to a surrounding chassis or even to determine the 

displacement envelope of an isolated motorcycle powertrain to prevent contact with a 

surrounding chassis [7].  

A systematic review by Rouillard and Sek [8] identifies the need to simulate 

random road input conditions to obtain representative results from planar dynamics 

models. One method to represent random road inputs is through a power spectral density 

(PSD) function. PSD is the measure of a given signal’s power content versus frequency. 

In this instance, the elevation profile of a given section of road is taken as the signal and 

the corresponding power. The PSD function can be approached in two ways. The first 

method is the collection of data on the vehicle in question in a specified vehicle operating 

environment under varying road undulations. These data sets can then be used to 

calculate a targeted PSD function. This method is often viewed as the most representative 

approach and allows for the PSD function to be tailored specifically to the vehicle. The 
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second approach involves pulling from existing PSD functions from similar vehicles and 

environments [8].  

The model developed by Kaul [1] for an isolated powertrain motorcycle is a 

foundational element to the ride comfort analysis presented in this report. Kaul’s eight-

DOF model characterizes the planar dynamics of a motorcycle with linearly represented 

vibration isolation and suspension systems. A comparison is made to a rigidly mounted 

powertrain system to understand the influences of the isolation system under random road 

irregularities represented by the PSD of the road profile. Results of the study show 

notable changes in sprung mass pitch and for the rear unsprung mass hop for the isolated 

powertrain model relative to the rigid powertrain model. The study was conducted at a 

single speed, but the changes in sprung mass pitch and rear unsprung mass hop behavior 

indicate an impact on the handling of the motorcycle due to the isolation system that 

should be taken into consideration during the design process [1].  

 

Methods 

Model Overview 

Two planar motorcycle ride comfort models have been applied for this MSE 

Capstone Project: a four-DOF, rigidly mounted powertrain model, and an eight-DOF 

isolated powertrain model. The models have been applied within MATLAB and solved 

for natural frequencies, mode shapes, displacement transmissibility, and PSD 

acceleration. For the PSD analysis, the motorcycle is being driven at a constant speed in a 

straight line with varying conditions of the road surface.  
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The four-DOF model, as seen in Figure 1, has a central sprung mass. The sprung 

mass is a rigid-body that combines all vehicle components above the front and rear 

suspension: chassis, powertrain, and rider. In the four-DOF model, the powertrain is 

rigidly mounted to the chassis, and therefore, it is a component of the sprung mass. 

Additionally, there is no distinction between the rider and the chassis, and the rider is 

assumed to be a perfectly rigid member of the sprung mass. However, the model could be 

expanded to more accurately represent rider interfaces with the vehicle by adding 

separate degrees of freedom to represent the hands, feet, and torso of the rider. The front 

unsprung mass, mf, and the rear unsprung mass, mr, represent the front and rear wheel 

assemblies, which include all components under the suspension systems: wheel, tire, 

brake, and axle. The front and rear suspension systems connect the sprung mass to each 

respective unsprung mass. As the suspension systems are comprised of two shocks or two 

fork legs each, these are treated as parallel systems. In turn, the contributions of each pair 

are represented as single equivalent spring-damper components in the model. Two points 

of contact represent the interfaces between the tires and road. Realistically, the tires 

would conform to the ground’s flat surface in a distributed area known as the contact-

patch, but this idealization has been made to reduce the model’s complexity. Between 

these contact points and the unsprung masses, another set of spring-damper systems 

represent equivalent tire stiffness and damping. However, tire damping is generally 

accepted as being small relative to the front and rear suspension damping and is 

dependent on the excitation applied [9]. To reduce model complexity, tire damping has 

been ignored for the analysis performed in this study, but the model does have the 

capability to include tire damping for any future work in this area.  



17 

 

 

Figure 1: Four-DOF Planar Motorcycle Model [5]. 

 

The eight-DOF model, as seen in Figure 2, is similar to the four-DOF model with 

the primary difference being the separation of the powertrain, mp and Ip, from the sprung 

mass, m and I, through two isolators at the front and two isolators at the rear of the 

powertrain. Similar to the front and rear suspension systems, the two pairs of isolators are 

treated as symmetrical components represented by their respective equivalent horizontal 

and vertical damping and stiffness. Since the powertrain is connected to the rear unsprung 

mass through a swingarm (represented by the dashed line in Figure 2), the isolation 

system is coupled to the rear unsprung mass.  

 



18 

 

Figure 2: Eight-DOF Planar Motorcycle Model [1]. 

 

In sum, the four-DOF model has the following DOFs: sprung mass bounce (y), 

sprung mass pitch (θ), front unsprung mass hop (yf), and rear unsprung mass hop (yr). The 

term bounce and hop refer to the vertical displacements of the sprung and unsprung 

masses, respectively. The eight-DOF model expands on the initial DOFs with the 

following: powertrain bounce (yp), powertrain pitch (γp), powertrain fore-aft (xp), and rear 

unsprung mass fore-aft (xr).  

 

Analysis Methods 

Three primary methods have been applied to investigate the two models: mode 

shape analysis, displacement transmissibility, and PSD acceleration. Both the four-DOF 

and eight-DOF models are based around equations of motion associated with each DOF 

that may be coupled with other DOF; these EOM form the foundation of the analysis. 

Both models apply the equations of motion (EOM), transmissibility equations, and PSD 
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acceleration as presented by Kaul [1]. The EOMs for the eight-DOF model are discussed 

further in this section. The dimensions of the motorcycle within the model are primarily 

the wheelbase, p, and the horizontal distance from the rear tire contact point to the center 

of gravity (COG), b. The interaction force due to swingarm stiffness between the 

powertrain and rear unsprung mass are represented by Fxsa, Fysa, Fxr,  and Fyr. Stiffnesses 

and damping parameters for the eight-DOF system are listed in Table 1.  

 

Table 1: Stiffness and Damping Parameters for the Eight-DOF System. 

Variable Description 

kf  Front Suspension Equivalent Vertical Stiffness Coefficient 

kpf  Front Tire Equivalent Stiffness Coefficient 

kpr  Rear Tire Equivalent Stiffness Coefficient 

kr  Rear Suspension Equivalent Vertical Stiffness Coefficient 

k1fx  Front Isolator Equivalent Horizontal Stiffness Coefficient 

k1fy  Front Isolator Equivalent Vertical Stiffness Coefficient 

k1rx  Rear Isolator Equivalent Horizontal Stiffness Coefficient 

k1ry  Rear Isolator Equivalent Vertical Stiffness Coefficient 

c
f
  c

f
 = Front Suspension Equivalent Vertical Linear Damping  

c
r
 c

r
 = Rear Suspension Equivalent Vertical Linear Damping  

c
tf
  c

tf
 = Front Tire Equivalent Vertical Linear Damping 

c
tr
  c

tr
 = Rear Tire Equivalent Vertical Linear Damping 

c1fx  c1fx  = Front Isolator Horizontal Damping Coefficient 

c1fy c1fy = Front Isolator Vertical Damping Coefficient 

c1rx  c1rx = Rear Isolator Horizontal Damping Coefficient 

c1ry  c1ry = Rear Isolator Vertical Damping Coefficient 

 



20 

The applied system of equations derived from Kaul [1] begins with the sprung 

mass equations of motion, Equations (1) and (2): 

 𝑚𝑦̈ + ൫𝑘௙ + 𝑘௥ + 𝑘ଵ௙௬ + 𝑘ଵ௥௬൯𝑦 − 𝑘௙𝑦௙ − 𝑘௥𝑦௥ + ൣ𝑘௙(𝑝 −

𝑏) − 𝑘௥𝑏 + 𝑘ଵ௙௬𝑥௙ଵ − 𝑘ଵ௥௬𝑥௥ଵ൧𝜃 + ൫𝑘ଵ௥௬𝑥௥ଵ − 𝑘ଵ௙ 𝑥௙ଵ൯𝛾 +

൫−𝑘ଵ௙௬ − 𝑘ଵ௥௬൯𝑦௣ + ൫𝑐௙ + 𝑐௥ + 𝑐ଵ௙௬ + 𝑐ଵ௥௬൯𝑦̇ − 𝑐௙𝑦̇௙ − 𝑐௥𝑦̇௥ +

ൣ𝑐௙(𝑝 − 𝑏) − 𝑐௥𝑏 + 𝑐ଵ௙௬𝑥௙ଵ − 𝑐ଵ௥௬𝑥௥ଵ൧𝜃̇ + ൫𝑐ଵ௥௬𝑥௥ଵ −

𝑐ଵ௙௬𝑥௙ଵ൯𝛾̇ + ൫−𝑐ଵ௙௬ − 𝑐ଵ௥௬൯𝑦̇௣ = 0, (1) 

and, 

 I𝜃̈ + ൣ𝑘௙(𝑝 − 𝑏)ଶ + 𝑘௥𝑏ଶ + 𝑘ଵ௙௬𝑥௙ଵ
ଶ + 𝑘ଵ௥௬𝑥௥ଵ

ଶ൧𝜃 +

ൣ𝑘௙(𝑝 − 𝑏) − 𝑘௥𝑏 + 𝑘ଵ௙௬𝑥௙ଵ − 𝑘ଵ௥௬𝑥௥ଵ൧𝑦 − 𝑘௙(𝑝 − 𝑏)𝑦௙ +

𝑘௥𝑏𝑦௥ + (𝑘ଵ௥௬𝑥௥ଵ − 𝑘ଵ௙௬𝑥௙ଵ)𝑦௣ + (−𝑘ଵ௙௬𝑥௙ଵ
ଶ − 𝑘ଵ௥ 𝑥௥ଵ

ଶ)𝛾 +

ൣ𝑐௙(𝑝 − 𝑏)ଶ + 𝑐௥𝑏ଶ + 𝑐ଵ௙௬𝑥௙ଵ
ଶ + 𝑐ଵ௥௬𝑥௥ଵ

ଶ൧𝜃̇ + {𝑐௙(𝑝 − 𝑏) −

𝑐௥𝑏 + 𝑐ଵ௙௬𝑥௙ଵ − 𝑐ଵ௥௬𝑥௥ଵ] 𝑦̇ − 𝑐௙(𝑝 − 𝑏)𝑦̇௙ + 𝑐௥𝑏𝑦̇௥ +

(𝑐ଵ௥௬𝑥௥ଵ − 𝑐ଵ௙௬𝑥௙ଵ)𝑦̇௣ + ൫−𝑐ଵ௙௬𝑥௙ଵ
ଶ − 𝑐ଵ௥௬𝑥௥ଵ

ଶ൯𝛾̇ = 0. (2) 

Equations (3), (4) and (5) represent the front and rear unsprung mass hop, 

 𝑚௙𝑦̈௙ − 𝑘௙𝑦 − 𝑘௙(𝑝 − 𝑏)𝜃 + ൫𝑘௙ + 𝑘௣௙൯𝑦௙ − 𝑐௙𝑦̇ −

𝑐௙(𝑝 − 𝑏)𝜃̇    + (𝑐௙ + 𝑐௣௙)𝑦̇௙ = 0, (3) 

 𝑚௥𝑥̈௥ = 𝐹௫௥, (4) 

 𝑚௥𝑦̈௥ + ൫𝑘௣௥ + 𝑘௥൯𝑦௥ − 𝑘௥𝑦 + 𝑘௥𝑏𝜃 + ൫𝑐௣௥ + 𝑐௥൯𝑦̇௥ −

𝑐௥𝑦̇           + 𝑐௥𝑏𝜃̇ = 𝐹௬௥  , (5) 
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and the powertrain fore-aft, bounce, and pitch EOMs are represented in Equations (6), 

(7), and (8), 

 𝑚௣𝑥̈௣ + ൫𝑘ଵ௙௫ + 𝑘ଵ௥௫൯𝑥௣ + ൫𝑘ଵ௥௫𝑦௥ଵ − 𝑘ଵ௙௫𝑦௙ଵ൯𝛾 +

൫𝑐ଵ௙௫ + 𝑐ଵ௥௫൯𝑥̇௣ + ൫𝑐ଵ௥௫𝑦௥ଵ − 𝑐ଵ௙௫𝑦௙ଵ൯𝛾̇ = 𝐹௫௦௔ , (6) 

 𝑚௣𝑦̈௣ + ൫𝑘ଵ௙௬ + 𝑘ଵ௥௬൯𝑦௣ + ൫𝑘ଵ௙௬𝑥௙ଵ − 𝑘ଵ௥௬𝑥௥ଵ൯𝛾 +

൫−𝑘ଵ௙௬𝑥௙ଵ + 𝑘ଵ௥௬𝑥௥ଵ൯𝜃 + ൫−𝑘ଵ௙௬ + 𝑘ଵ௥௬൯𝑦 + ൫𝑐ଵ௙௬ +

𝑐ଵ௥௬൯𝑦̇௣ + ൫𝑐ଵ௙௬𝑥௙ଵ − 𝑐ଵ௥௬𝑥௥ଵ൯𝛾̇ + ൫−𝑐ଵ௙௬𝑥௙ଵ + 𝑐ଵ௥௬𝑥௥ଵ൯𝜃̇ +

൫−𝑐ଵ௙௬ − 𝑐ଵ௥௬൯𝑦̇ = 𝐹௬௦௔ , (7) 

 I௣𝛾̈ + ൫𝑘ଵ௙௫𝑦௙ଵ
ଶ + 𝑘ଵ௙௬𝑥௙ଵ

ଶ + 𝑘ଵ௥௫𝑦௥ଵ
ଶ + 𝑘ଵ௥௬𝑥௥ଵ

ଶ൯𝛾 +

(𝑘ଵ௥௫𝑦௥ଵ − 𝑘ଵ௙௫𝑦௙ଵ)𝑥௣ + (𝑘ଵ௙௬𝑥௙ଵ − 𝑘ଵ௥௬𝑥௥ଵ)𝑦௣ +

(−𝑘ଵ௙௬𝑥௙ଵ + 𝑘ଵ௥௬𝑥௥ଵ)𝑦 + (−𝑘ଵ௙௬𝑥௙ଵ
ଶ − 𝑘ଵ௥௬𝑥௥ଵ

ଶ)𝜃 +

൫𝑐ଵ௙௫𝑦௙ଵ
ଶ + 𝑐ଵ௙ 𝑥௙ଵ

ଶ + 𝑐ଵ௥௫𝑦௥ଵ
ଶ + 𝑐ଵ௥௬𝑥௥ଵ

ଶ൯𝛾̇ + (𝑐ଵ௥௫𝑦௥ଵ −

𝑐ଵ௙௫𝑦௙ଵ)𝑥̇௣ + (𝑐ଵ௙௬𝑥௙ଵ − 𝑐ଵ௥௬𝑥௥ଵ)𝑦̇௣ + (−𝑐ଵ௙௬𝑥௙ଵ +

𝑐ଵ௥௬𝑥௥ଵ)𝑦̇ + (−𝑐ଵ௙௬𝑥௙ଵ
ଶ − 𝑐ଵ௥௬𝑥௥ଵ

ଶ)𝜃̇ = 𝐹௫௦௔𝑦௦௔ − 𝐹௬௦௔𝑥௦௔. (8) 

Equations (1) through (8) constitute the foundational elements of the modal, displacement 

transmissibility, and PSD acceleration analyses [1]. 

The mode shapes have been identified to understand the coupling between the 

different DOFs within the system [1]. Mode shapes have been scaled to ± 1 and results 

corresponded to each of the DOFs. From there, coupling between degrees-of-freedom can 

be identified with a specific natural frequency with a mode shape magnitude within ±1. 

The natural modes allow an understanding of the inherent dynamic characteristics of the 

system and the interaction between different degrees-of-freedom [1]. 
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 Displacement transmissibility is the ratio of a DOFs output displacement (position 

or angle) to the system input [10]. Displacement transmissibility is a good dimensionless 

indicator that can be used to comprehend the results from natural frequencies and mode 

shapes, which can then be used to explain some of the results from the PSD acceleration 

plots. However, displacement transmissibility may not be a direct representation of ride 

comfort as it would need to be differentiated into acceleration transmissibility to draw 

ride comfort conclusions. This is because the accelerations perceived by the rider are the 

primary indicator of discomfort [4]. Therefore, displacement transmissibility has not been 

used to derive any ride comfort conclusions. In this model, the input was road 

irregularities represented by sinusoidal inputs as base excitation. Along with these inputs, 

a phase delay between the front and rear tire contact points has been accounted for, which 

is known as wheelbase filtering. Under excitation frequency, ω, displacement 

transmissibility, T, is derived by Equation (9),  

 T = [−𝜔ଶ𝑀 + 𝑖𝜔𝐶 + 𝐾]ିଵ[𝐾ሖ + 𝑖𝜔𝐶ሖ], (9) 

where M, C, and K are the mass, damping, and stiffness matrices compiled from Equation 

(1) through (8) [1]. 

The 𝐾ሖ  matrix,  

 Kሖ = [0 0 𝑘௣௙ 0 𝑘௣௥ 0 0 0]், (10) 

and 𝐶ሖ  matrix, 

 𝐶ሖ =  [0 0 𝑐௣௙ 0 𝑐௣௥ 0 0 0]், (11) 

represent the base excitation applied to determine displacement transmissibility [1].  
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 PSD acceleration is well documented as a method for evaluating vehicle ride 

comfort [4]. PSD acceleration for vehicle ride comfort models represents the magnitude 

of acceleration for a given mode under the influence of the road profile’s PSD function. 

The PSD function of the road profile characterizes the magnitude of surface irregularities 

as a function of their wavelength. For the purposes of this model, a PSD constant, Srr, 

representing a standard road profile with good surface quality has been applied. PSD 

acceleration results can then be inspected in the following ways. Higher magnitudes of 

PSD acceleration indicate stronger vibrations for the sprung mass. Larger bandwidths 

indicate that the vibrations will be present across a wider range of frequencies. 

Significant peaks and bandwidths can then be compared to an established understanding 

of human sensitivity to vibrations to understand the potential impact on ride comfort. The 

frequency response function (FRF), represented by H(ω), 

 𝐻(𝜔) = −𝜔ଶ[−𝜔ଶ𝑀 + 𝑖𝜔𝐶 + 𝐾]ିଵ[𝐾෡ + 𝑖𝜔𝐶መ], (12) 

along with the 𝐾෡ matrix, 

 
𝐾෡ = ൤

0 0 𝑘௣௙ 0 0 0 0 0

0 0 0 0 𝑘𝑝𝑟 0 0 0
൨

்

, 
(13) 

and the 𝐶 ෡  matrix 

 
𝐶መ = ൤

0 0 𝑐௣௙ 0 0 0 0 0

0 0 0 0 𝑐𝑝𝑟 0 0 0
൨

்

, 
(14) 

establish the foundation of base excitation to be used in PSD acceleration derivation [1].  

A modified FRF, represented by H*(ω,V) where V is vehicle velocity, 
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𝐻(𝜔) ൤

1

𝑒ି௜ఠ
೛

ೇ
൨ = 𝐻∗(𝜔, 𝑉), 

(15) 

is applied to incorporate wheelbase filtering due to the delay of road inputs between the 

front and rear tire [1]. 

Finally, the PSD of the road profile, characterized by Srr(ω,V), was selected to be 

16 x 10-6, which is accepted to be representative of a good road surface [5] based on ISO 

classification of road surfaces. From there, the Sii(ω,V) equation, 

 𝑆௜௜(𝜔, 𝑉) = |𝐻௜
∗(𝜔, 𝑉)|ଶ𝑆௥௥(𝜔, 𝑉), (16) 

is applied to determine acceleration PSD [1]. 

 

Human Sensitivity to Vibrations 

 Perceived acceleration by the rider is directly related to ride comfort [4]. A 

method has been established by Cossalter et al. [4] for evaluating the ride comfort of a 

motorcycle within the frequency domain. To evaluate vibrations from the road profile, 

three frequency ranges are detailed by Cossalter et al. “the quasi-static range (frequency v 

< 0.5 Hz), the ride range (0.5 < v < 20 Hz) and the acoustic range (20 < v < 20 000 Hz)” 

[4]. As stated by Cossalter et al., if a road surface’s topography falls within the quasi-

static frequency range, the vehicle can be assumed to be a static system as the frequencies 

are low enough to not approach system natural frequencies. Quasi-static range 

frequencies can be thought of as if the motorcycle is riding over gradual slopes that do 

not engage the motorcycle suspension systems or impact the rider in a significant manner. 

Ride-range frequencies, which correspond to undulations of the road surface, result in 
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motorcycle wheel travel and suspension travel, and they impact the chassis and the rider. 

The ride-range frequencies are the most critical from a rider-comfort perspective. This is 

because the human body is most sensitive to 1 to 8 Hz frequencies while arms and hands 

are most sensitive to 12 to 16 Hz frequencies. The acoustic frequency range corresponds 

to the roughness of a road surface. The human body is less sensitive in this range, but 

these frequencies can cause a perceptible level of noise [4].  

 

Model Verification Methods 

The four-DOF model was used to establish a baseline set of results that could then 

be compared to existing literature and to act as a checkpoint to eliminate any errors prior 

to increasing the complexity of the model with eight DOFs. The eight-DOF model was 

developed as an expansion of the original four-DOF model. To check the validity of the 

eight-DOF model, the isolator stiffnesses around the powertrain were set to extremely 

high values. This was done to approach a rigid connection between the powertrain and 

sprung mass, and therefore approach the behavior seen in the four-DOF model results. 

The effort was successful, therefore validating the eight-DOF model.  

 

Analysis Overview 

Following an initial analysis of the eight-DOF model, the influence of the rear 

isolator’s characteristics was investigated in the following ways: stiffness variation, 

position variation, damping variation, and with different combinations of stiffness and 

damping. The specific inputs used for each investigation are presented in the next section. 
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Results and Discussion 

 This section presents the results obtained from all the simulation models used for 

this study. Some of the trends resulting from the change of rear isolator parameters are 

also presented and discussed in this section.  

For the results of the nominal eight-DOF model, all the input parameters can be 

seen in Table 2. Input parameters were selected to be realistic such that they could be 

reproduced in an experimental set-up. For instance, the vehicle speed was set to 17 m/s 

(or approximately 38 mph). As the vehicle speed plays a direct role in the vehicle’s rate 

of interaction with the road inputs, adjusting this value would result in different behavior 

and should be considered as a future area of investigation. 

 

 

 

 

 

 

 

 

 

 

 



27 

Table 2: Nominal Eight-DOF Model Inputs. 

Variable Value 

v = Vehicle Steady State Speed 17 [m/s], 38 [mph] 

p = Wheelbase 1.4 [m] 

b = Distance from Rear Tire Contact Point to Center of Gravity 0.7 [m] 

m = Mass - Sprung Mass * 200 [kg] 

mp = Mass – Powertrain 125 [kg] 

I = Mass Moment of Inertia for Sprung Mass * 38 [kgm2] 

Ip= Mass Moment of Inertia for Powertrain 8 [kgm2] 

m
f
 = Mass – Front Unsprung Mass 15 [kg] 

m
r
 = Mass – Rear Unsprung Mass 18 [kg] 

k
f
 = Front Suspension Equivalent Vertical Stiffness 15 [kNm] 

k
r
 = Rear Suspension Equivalent Vertical Stiffness 24 [kNm] 

k1fx = Front Isolator Horizontal Stiffness Coefficient  250 [kN/m] 

k1fy = Front Isolator Vertical Stiffness Coefficient 250 [kN/m] 

k1rx = Rear Isolator Horizontal Stiffness Coefficient 250 [kN/m] 

k1ry = Rear Isolator Vertical Stiffness Coefficient 250 [kN/m] 

k
pf

 = Front Tire Stiffness 180 [kN/m] 

k
pr

 = Rear Tire Stiffness 180 [kN/m] 

c
f
 = Front Suspension Equivalent Vertical Linear Damping  900 [Ns/m] 

c
r
 = Rear Suspension Equivalent Vertical Linear Damping  900 [Ns/m] 

c
tf
 = Front Tire Equivalent Vertical Linear Damping 0 [Ns/m] 

c
tr
 = Rear Tire Equivalent Vertical Linear Damping 0 [Ns/m] 

c1fx  = Front Isolator Horizontal Damping Coefficient 900 [Ns/m] 

c1fy = Front Isolator Vertical Damping Coefficient 900 [Ns/m] 

c1rx = Rear Isolator Horizontal Damping Coefficient 900 [Ns/m] 

c1ry = Rear Isolator Vertical Damping Coefficient 900 [Ns/m] 

xr = Rear Isolator Horizontal Position 0.320 [m] 

yr = Rear Isolator Vertical Position 0.055 [m] 

xf  = Rear Isolator Horizontal Position 0.325 [m] 

yf = Rear Isolator Vertical Position 0.020 [m] 
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Modal Results 

With nominal inputs, the corresponding modes of the eight-DOF system can be 

seen in Figure 3. From these results, key relationships between degrees-of-freedom of the 

system pertaining to the natural modes can be identified. For the natural mode at 1.59 Hz, 

the sprung mass bounce is directly coupled with powertrain bounce along with some 

limited coupling with both sprung mass pitch and powertrain pitch. At 3.14 Hz, sprung 

mass pitch is coupled with powertrain pitch. The natural frequency at 9.40 Hz 

corresponds to the fore-aft mode of the rear unsprung mass that is coupled with the fore-

aft mode of the powertrain fore-aft along with minimal coupling with both sprung mass 

and powertrain pitch. The natural frequency at 12.9 Hz pertains to powertrain bounce that 

is coupled to sprung mass bounce with minor coupling seen with the rear unsprung mass 

hop and powertrain pitch. The rear and front unsprung mass hops have natural 

frequencies at 16.9 Hz and 18.2 Hz, respectively, with little to no coupling with other 

degrees-of-freedom. Finally, the rear unsprung mass fore-aft mode has a natural 

frequency of 621 Hz with minimal coupling with the powertrain fore-aft motion. Based 

on the natural frequencies and their respective mode shapes, some insight is obtained into 

the characteristics of the PSD acceleration plots, such as the peaks associated with 

specific frequencies. 
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Figure 3: Eight-DOF Mode Shapes with Nominal Stiffness Values. 

 

Displacement Transmissibility 

 Displacement transmissibility has also been identified for the nominal input 

values, but as displacement transmissibility does not directly pertain to rider comfort 

analysis, all results are included in the Appendix B. Acceleration transmissibility may be 
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used in some cases to evaluate ride comfort and compared with PSD in order to 

quantitatively assess a rider’s exposure over specific ranges of frequency for different 

parts of a rider’s body [4]. 

 

PSD Acceleration Nominal Inputs 

 The eight-DOF model with nominal inputs resulted in natural frequencies and 

mode shapes that fell within expectations as the scale of the mode shapes and behavior 

aligned with prior literature [1]. As the focus of the research is on ride comfort, the 

sprung mass bounce and sprung mass pitch remain the primary topic of discussion due to 

their significance. As seen in Figure 4, the sprung mass bounce shows the same number 

of peaks as the results from the four-DOF model. However, the four-DOF model does not 

represent separate rigid bodies for sprung mass and powertrain since the powertrain is 

rigidly mounted. An initial peak is seen near the 1.59 Hz natural frequency for sprung 

mass bounce. This peak feature a sharp magnitude with relatively small bandwidth. With 

this peak falling inside the ride-range frequency band, rider comfort is expected to be 

directly affected. The second peak, with a significantly larger amplitude and bandwidth, 

falls just within the ride range frequency. This peak lands at 13.7 Hz, which is likely due 

to the powertrain bounce coupled with the sprung mass at a natural frequency of 12.9 Hz; 

this mode exhibits strong coupling with pitch of the powertrain and sprung mass at a 

natural frequency of 14.3 Hz.  However, as frequencies fall closer to the limits of the 

ride-range band, discomfort drops off quickly [4]. As discomfort levels are subjective, an 

experimental verification of the vehicle under these conditions would be required to 

identify whether or not the first or second peak is the primary concern for ride comfort. 
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The third and fourth peaks fall just outside the ride-range frequency bands with peaks at 

21.6 Hz and 35.2 Hz and would not have any impact on ride comfort. 

 

 

Figure 4: PSD Acceleration for Sprung Mass Bounce under Nominal Inputs. 

 

 Sprung mass pitch PSD acceleration results can be seen in Figure 5. Notably, 

more complex behavior can be observed; this is likely due to the interplay between the 

bounce and pitch of the sprung mass and powertrain and the delayed inputs at the front 

and rear tire contact points due to wheelbase filtering. These are larger bandwidths 

relative to the sprung mass bounce PSD results. However, as bounce (vertical 

acceleration) and pitch (angular acceleration) represent distinct types of movement, a 

direct comparison cannot be made between the two. Also, significant coupling between 

sprung mass pitch and sprung mass bounce makes it challenging to specifically attribute 
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the PSD to one of the two kinds of motion. Distinct behavior at 1.8 Hz, 10.8 Hz, and 14.2 

Hz trends with the natural frequencies and coupling between sprung mass and powertrain 

bounce: 1.59 Hz sprung mass and powertrain bounce mode, 12.9 Hz sprung mass bounce 

and powertrain bounce mode, and 14.3 Hz powertrain pitch mode. The relatively large 

bandwidth between approximately 5 and 16 Hz has a relatively high magnitude within 

the ride-range frequency band, which corresponds to notable significance for ride comfort 

across a wide frequency range. 

 

 

Figure 5: PSD Acceleration for Sprung Mass Pitch under Nominal Inputs. 

 

 To further investigate the contributions and impacts of rear vibration isolator 

parameters, stiffness, position, damping, and combinations of stiffness and damping have 
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been evaluated. All other input values listed in Table 2 have not been changed for all 

analyses reported in this section.  

 

Stiffness Variation 

The stiffness variation inputs can be seen in Table 3, which represent values plus 

and minus 30% of the nominal value at 10% increments. 

 

Table 3: Rear Isolator Stiffness Variation Inputs. 

 Iteration 
 Rear Isolator Vertical Stiffness 
(kN/m) 

 Rear Isolator Horizontal Stiffness 
(kN/m) 

1 175 175 
2 200 200 
3 225 225 
4 250 250 
5 275 275 
6 300 300 
7 325 325 

  

As seen in Figure 6, the maximum PSD acceleration for sprung mass bounce 

starts with a small initial increase between 175 and 200 N/mm and is followed by a 

gradual decrease with increasing stiffness. The magnitudes decreased by 57.6% with a 

total change of -1.04 (m/s2)2 /Hz from the peak value. This drop is significant and 

indicates an improvement in ride comfort. 
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Figure 6: Stiffness Variation PSD Acceleration Maximums for Sprung Mass Bounce. 

 

 The maximum PSD acceleration stiffness variation results for sprung mass pitch 

can be seen in Figure 7. The resulting behavior has no discernible trend. The sudden 

decrease from 175 to 200 N/mm may indicate a change in the corresponding natural 

frequency at which the maximum PSD acceleration value occurs due to a change in the 

vehicle response as the pitch modes are complexly intertwined with other degrees-of-

freedom of the system. A deeper investigation and comparison of the full PSD 

acceleration profile for all input values would be required to draw a clear conclusion. 

However, the investigation into the full PSD acceleration plots for all iterations was not 

in project scope and will need to be continued as part of any ongoing efforts. 
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Figure 7: Stiffness Variation PSD Acceleration Maximums for Sprung Mass Pitch. 

 

Position Variation 

Rear vibration isolator position variation inputs can be seen in Table 4. The 

position variation inputs represent values plus and minus 30% of the nominal value at 

10% increments. Position of the rear mount is relative to the center of mass of the 

powertrain. 

 

Table 4: Rear Isolator Position Variation Inputs. 

 Position Iteration  Rear Isolator Vertical Position (m)  Rear Isolator Horizontal Position (m) 

1 0.0385 0.224 
2 0.044 0.256 
3 0.0495 0.288 
4 0.055 0.32 
5 0.0605 0.352 
6 0.066 0.384 
7 0.0715 0.416 
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 The sprung mass bounce’s maximum PSD acceleration values show a reasonable 

impact with a total magnitude change of -0.6662 (m/s2)2 /Hz and a 37.9% decrease across 

the iterations as seen in Figure 8. There is an initial increase between iteration 1 and 2, 

followed by a gradual decrease that appears to taper out as the position moves farther 

down and away from the powertrain COG. The model maintains constant swingarm 

stiffness throughout the iterations for rear vibration isolator position, regardless of the 

varying length between the rear unsprung mass and powertrain. The influence of rear 

isolator position on PSD acceleration for the sprung mass bounce is apparent, but difficult 

to draw any explicit conclusions from.   

 

 

Figure 8: Position Variation PSD Acceleration Maximums for Sprung Mass Bounce. 

 

The sprung mass bounce’s maximum PSD acceleration values also exhibit a 

significant influence due to the change in isolator position, exhibiting a total magnitude 

change of -4.96 (m/s2)2 /Hz and a 42.7% decrease across the iterations as seen in Figure 9. 
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Notably, it appears that there is a limit to how Pitch PSD acceleration can decrease 

relative to moving the rear isolator down and away from the powertrain COG.  

 

 

Figure 9: Position Variation PSD Acceleration Maximums for Sprung Mass Pitch. 

 

With the understanding that an investigation of the complete PSD acceleration 

plots across all iterations is required to confidently draw a conclusion about a discernible 

trend, the apparent takeaway is that the ride comfort improves as the rear vibration 

isolator position moves farther down and away from the powertrain COG.  

 

Damping Variation 

The rear isolator damping variation inputs can be seen in Table 5, which represent 

values plus and minus 30% of the nominal value at 10% increments. 
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Table 5: Rear Isolator Damping Variation Inputs. 

 Iteration 
 Rear Isolator Vertical Damping 
(Ns/m) 

 Rear Isolator Horizontal Damping 
(Ns/m) 

1 630 630 
2 720 720 
3 810 810 
4 900 900 
5 990 990 
6 1080 1080 
7 1170 1170 

 

 

The maximum PSD acceleration of sprung mass bounce shows a significant 

decrease with an increase in damping, with a total magnitude change of -1.62 (m/s2)2 /Hz 

and a 44.9% decrease across the iterations as seen in Figure 10. As detailed by Rao [11], 

damping is generally expected to be the most significant contributor since increased 

damping is directly proportional to additional energy dissipation within the system. This, 

in turn, produces a clear trend of PSD acceleration magnitudes decreasing as rear isolator 

damping increases. The total change of the PSD acceleration of sprung mass bounce is 

relatively higher for damping (-1.62) as compared to stiffness (-1.04) and position (-

0.662) variation.  
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Figure 10: Damping Variation PSD Acceleration Maximums for Sprung Mass Bounce. 

 

 The maximum PSD acceleration for sprung mass bounce also exhibits a 

significant and consistent decrease as damping increases, with a total magnitude change 

of -5.05 (m/s2)2 /Hz and a 31.2% decrease across the variations as seen in Figure 11.  

 

 

Figure 11: Damping Variation PSD Acceleration Maximums for Sprung Mass Pitch. 
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Damping and Stiffness Combinations 

Rear vibration isolator damping and stiffness combination inputs can be seen in 

Table 6. The maximum and minimum values for stiffness and damping iterations seen in 

Table 3 and Table 5, respectively, have been simulated in four combinations. 

 

Table 6: Rear Isolator Damping and Stiffness Combination Inputs. 

 Iteration 
 Rear Isolator Vertical & Horizontal   
Damping (Ns/m) 

 Rear Isolator Vertical & Horizontal 
Stiffness (kN/m) 

1 1170 325 
2 630 325 
3 1170 175 
4 630 175 

 

 For the sprung mass bounce maximum PSD acceleration values, the contributions 

of stiffness and damping align with expectations and may have a small dependence on 

one another. As seen in Figure 12, there is a 43.8% increase in magnitude between 

iterations 1 and 2 as damping decreases while stiffness is constant at 325 kN/m. Iterations 

3 and 4 feature a 66.1% increase in magnitude when stiffness is constant at 175 kN/m. As 

damping decreases, the PSD acceleration peaks increase, as expected. Notably, at a lower 

stiffness value, the decrease in damping has a more significant effect. This could imply 

that for lower stiffness rear isolators, damping variation may have a greater effect on PSD 

acceleration magnitudes for the specific system analyzed in this study.  

 There is a 114% increase between iterations 1 and 3 and a 148% increase between 

iterations 2 and 4. It appears that, under these conditions, a stiffness decrease results in a 

more significant change to the PSD acceleration maximum. Additional investigation 
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would be needed to investigate whether or not the significant increase in PSD 

acceleration response for the lower stiffness input values is due to a change in the natural 

frequencies resulting in greater excitation at the particular velocity of the motorcycle used 

for this analysis.  

 

 

Figure 12: Damping and Stiffness Combination PSD Acceleration Maximums for Sprung Mass 

Bounce. 

 

For the sprung mass pitch maximum PSD acceleration values, there is a 9.81% 

increase in magnitude between iterations 1 and 2 as damping decreases while stiffness is 

constant at 325 kN/m as seen in Figure 13. Iterations 3 and 4 feature a 32.9% increase in 

magnitude as damping decreases when stiffness is constant at 175 kN/m. Decreases in 

damping still result in lower PSD acceleration magnitudes for the sprung mass pitch. 

However, changes in stiffness result in inconsistent behavior for sprung mass pitch as 

there is a 7.44% decrease between iterations 1 and 3 and a 12.1% increase between 

iterations 2 and 4.  
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Figure 13: Damping and Position Combination PSD Acceleration Maximums for Sprung Mass Pitch. 

 

Conclusions and Recommendations 

Methods Summary 

The analysis performed for this study was conducted with two planar motorcycle 

ride comfort models. A rigidly-mounted-powertrain four-DOF model was used to 

establish a baseline set of results, which can be directly compared with existing literature. 

An isolated-powertrain eight-DOF model was then been used to investigate the rear 

isolator stiffness, position, and damping influences on motorcycle ride comfort after first 

comparing model behavior to the four-DOF results with approximately rigid isolator 

stiffness parameters. Both models were developed in MATLAB and solved for natural 

frequencies, mode shapes, displacement transmissibility, and PSD acceleration of the 

motorcycle under constant speed and straight-running conditions. A review of human 

sensitivity to vibrations is briefly discussed with three distinct frequency ranges that are 

generally used for ride comfort analysis: quasi-static, ride-range, and acoustic. All ride 
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comfort analysis has subsequently been focused on PSD acceleration of the sprung mass 

within the ride-range frequency of 1 to 20 Hz.  

 

Conclusions 

The primary focus of the analysis in this MSE Capstone Project was on sprung mass 

bounce and sprung mass pitch as these two degrees-of-freedom are most related to the 

evaluation of ride comfort. Results from modal analysis identified significant coupling 

between bounce and pitch of the sprung mass in conjunction with the motion of the 

powertrain. The coupling between sprung mass bounce and sprung mass pitch can be 

seen to influence displacement transmissibility and PSD acceleration results for the 

sprung mass and the powertrain. 

Nominal parameter results for the PSD acceleration of the sprung mass fell within 

expected ranges based on existing literature. The results for PSD acceleration also 

identified key areas for ride comfort analysis. Two primary peaks of PSD acceleration 

were present within the ride-range frequencies at 1.59 Hz and 13.7 Hz. The peak at 13.7 

Hz was greater than the peak at 1.59 Hz and had a notably higher bandwidth. However, 

this peak approached the boundary of the ride-range frequency band, which is where the 

levels of discomfort begin to significantly drop off. Because of the subjective nature of 

ride comfort, along with the significant influence of vehicle speed and the nature of the 

road surface, experimental evaluation of the vehicle would be needed to validate whether 

or not the 13.7 Hz frequency is the greatest area of concern for ride comfort for the 

sprung mass bounce DOF. Sprung mass pitch is seen to be significant within the ride-
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range frequency band as well with a bandwidth spanning from 5 Hz to 16 Hz and a stair-

step behavior up to the maximum peak at 14.2 Hz. Notably, the magnitude of PSD 

acceleration for sprung mass pitch is higher than that of bounce. However, no direct 

comparison should be made between the bounce and pitch modes as they represent 

distinct types of movement and are inherently coupled. 

Stiffness variation results indicated a significant and gradual decrease in the 

maximum PSD acceleration for sprung mass bounce as stiffness of the rear isolator 

increased. The results for sprung mass pitch are inconclusive with no discernible trend as 

there are inconsistencies between the first few stiffness iterations. This may be due to 

changes in corresponding natural frequencies as the isolator stiffness changes.  

Position variation also exhibits a notable decrease in sprung mass bounce 

maximum PSD acceleration as the position of the rear isolator moves down and away 

from the powertrain COG. However, this change is smaller than the decrease with 

stiffness variation. The sprung mass pitch also behaves in a more consistent manner as 

the maximum PSD acceleration values have an initial steep decrease before leveling out, 

instead of the inconsistency seen between the first few stiffness iterations.  

Damping variation exhibits a strong influence on the maximum PSD acceleration 

values for both the sprung mass bounce and pitch modes as compared to the stiffness and 

position variations. Additionally, both bounce and pitch modes decrease in a consistent 

manner. The significance of damping when designing for ride comfort is clear as 

damping is directly proportional to additional energy dissipation within the system. 

However, modifying isolator damping on a motorcycle is challenging due to the limits of 
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a passive isolator’s hysteretic damping behavior as well as space limitations on the 

vehicle.  

Of the four combinations of damping and stiffness parameters investigated, 

sprung mass bounce saw increases in PSD acceleration maximums as stiffness decreased 

as well as when damping decreased. Notably, the percent difference of PSD acceleration 

maximums between the two stiffness values is greater than the percent difference 

between the two damping values, which does not align with the previous results where 

damping changes had a more significant influence on PSD acceleration maximums. 

However, the influence of stiffness on the natural frequencies of the system may be 

significant and requires further investigation.  

Across the four combinations applied, the sprung mass pitch exhibits inconsistent 

behavior between the minimum and maximum stiffness values. The combination with the 

lower damping saw an increase in PSD acceleration maximums as stiffness decreased. 

However, for the combination with the higher damping, there is a decrease in PSD 

acceleration maximums. The direct influence of stiffness changes on the natural 

frequencies of the system requires further investigation. Additionally, the pitch mode 

features complex coupling with the other pitch and bounce modes of the model, which 

make discerning behavioral trends difficult. 

 

Limitations 

 The primary limitation of the analysis conducted in this study is the method of 

evaluating stiffness, position, and damping variations along with the combinations of 
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minimum and maximum stiffness and damping parameters. The maximum PSD 

acceleration values associated with the parameter iterations only paint a partial picture of 

the ride comfort behavior. An additional investigation into the full PSD acceleration plots 

for all iterations applied is necessary to understand the following: changes in natural 

frequencies, the locations of the peak PSD acceleration values relative to the ride-range 

frequency band, the changes to the peak bandwidths, and changes in other peaks within 

the resulting plots may be important in a ride comfort evaluation but fall below the 

overall plot maximum. 

 

Future Research 

The findings associated with this MSE Capstone Project suggest a number of 

possible research paths. Next steps would require validating the model with physical 

testing of a vehicle in straight-running conditions over a known PSD surface either in a 

controlled laboratory setting or on a test track. The model could be expanded to 

specifically target key rider interfaces with separate degrees of freedom used to represent 

the hands, feet, and torso of the rider. An investigation could be made into acceleration-

transmissibility to augment the results of displacement transmissibility. Other parameter 

variations could also be investigated within the model, such as other road profiles, 

vehicle speeds, and different excitation sources. Finally, the most important next step 

would be investigating the full PSD acceleration plot for all parameter variations applied 

to understand the complete picture of ride comfort under varying conditions. 
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Appendix A. Four-DOF Nominal Results 

 

 

Figure A1: Four-DOF Mode Shapes. 

 

 

Figure A2: Four-DOF Sprung Mass Bounce Transmissibility. 
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Figure A3: Four-DOF Sprung Mass Pitch Transmissibility. 

 

 

Figure A4: Four-DOF Front Unsprung Mass Hop Transmissibility. 
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Figure A5: Four-DOF Rear Unsprung Mass Hop Transmissibility. 

 

 

Figure A6: Four-DOF Sprung Mass Bounce PSD. 
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Figure A7: Four-DOF Sprung Mass Pitch PSD. 

 

 

Figure A8: Four-DOF Front and Rear Unsprung Mass Hop PSD. 
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Appendix B. Eight-DOF Nominal Results 

 

 

Figure B1: Eight-DOF Sprung Mass Bounce Transmissibility. 

 

 

Figure B2: Eight-DOF Sprung Mass Pitch Transmissibility. 
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Figure B3: Eight-DOF Rear Unsprung Mass Fore-Aft Transmissibility. 

 

 

Figure B4: Eight-DOF Front and Rear Unsprung Mass Hop Transmissibility. 
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Figure B5: Eight-DOF Powertrain Fore-Aft Transmissibility. 

 

 

 Figure B6: Eight-DOF Powertrain Bounce Transmissibility. 
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Figure B7: Eight-DOF Powertrain Pitch Transmissibility. 

 

 

Figure B8: Eight-DOF Rear Unsprung Mass Hop PSD. 
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Figure B9: Eight-DOF Rear Unsprung Mass Fore-Aft PSD. 

 

 

Figure B10: Eight-DOF Front Unsprung Mass Hop PSD. 
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Figure B11: Eight-DOF Powertrain Fore-Aft PSD. 

 

 

Figure B12: Eight-DOF Powertrain Bounce PSD. 
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Figure B13: Eight-DOF Powertrain Pitch PSD. 
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Appendix C. Four-DOF MATLAB Model 

clc 
close all 
clear 
  
%Vehicle Dimensions 
    p = 1.4; %Wheelbase, m 
    b = 0.7; %Rear tire contact to CG, m 
    v = 17; %vi*1000/3600 %vehicle steady-state speed, m/s 
  
%Mass Matrix 
    m = 325; %sprung mass, kg 
    I = 38; %MOI for sprung mass, kg-m^2 
    mf = 15; %front unsprung mass, kg 
    mr = 18; %rear unsprung mass, kg 
    M = [m 0 0 0;0 I 0 0;0 0 mf 0;0 0 0 mr]; 
  
%Equivalent vertical stiffness 
kzr = 24e3; %rear shock spring coef., N/m 
kzf = 15e3; %front shock spring coef., N/m 
ktr = 180e3; %rear tire spring coef., N/m 
ktf = 180e3; %front tire spring coef., N/m 
K = [(kzf+kzr) (-kzr*b+kzf*(p-b)) (-kzf) (-kzr);... 
    (-kzr*b+kzf*(p-b)) (((p-b)^2)*kzf+kzr*b^2) (-kzf*(p-b)) (kzr*b);... 
    (-kzf) (-(p-b)*kzf) (kzf+ktf) 0;... 
    (-kzr) (kzr*b) 0 (kzr+ktr)]; 
  
%Kp = [0 0;0 0;ktf 0;0 ktr]; %Base excitation spring matrix 
Kp = [0;0;ktf;ktr]; 
  
%Equivalent vertical damping 
czr = 900;%rear shock spring coef., Ns/m 
czf = 900; %front shock spring coef., Ns/m 
ctr = 0; %rear tire spring coef., Ns/m 
ctf = 0; %front tire spring coef., Ns/m 
C = [(czf+czr) (czf*(p-b)-czr*b) (-czf) (-czr);... 
    (czf*(p-b)-czr*b) (((p-b)^2)*czf+czr*b^2) (-czf*(p-b)) (czr*b);... 
    (-czr) ((-p+b)*czf) (czf+ctf) 0;... 
    (-czr) (czr*b) 0 (czr+ctr)]; 
%Cp = [0 0;0 0;ctf 0;0 ctr]; 
Cp = [0;0;ctf;ctr]; 
  
%Transmissibility 
T=[]; 
for w=0:0.5:300 
    Tr=inv(-w^2*M+1i*w*C+K)*(Kp+1i*w*Cp); 
    T=[T abs(Tr)]; 
End 
  
freq=[0.1:0.5:300]/(2*pi); 
  
  
%PSD 
Kpp = [0 0;0 0;ktf 0;0 ktr]; 
Cpp = [0 0;0 0;ctf 0;0 ctr]; 
    Hs=[]; Srr=[]; 
  
    k0=1; S0=16e-6;% good road surface m^2/(cycle/m) 
    %k0=1; S0=1024e-6;% Very Poor road surface 
    for w=0:0.5:300 
        Hr=-w^2*inv(-w^2*M+1i*w*C+K)*(Kpp+1i*w*Cpp); 
        F=[1; exp(-1i*w*p/v)]; 
        Hs=[Hs Hr*F]; 
  
        if w/v <= k0 
            n=2; 
        else 
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            n=1.5; 
        end 
  
        Srr=[Srr (S0/v)*(v*k0/w)^n]; 
    end 
  
w=0:0.5:300; 
Sy=abs(Hs(1,:)).^2.*Srr*2*pi; 
St=abs(Hs(2,:)).^2.*Srr*2*pi; 
Syf=abs(Hs(3,:)).^2.*Srr*2*pi; 
Syr=abs(Hs(4,:)).^2.*Srr*2*pi; 
  
f = w/(2*pi); 
  
%Plot Transmissibility 
    w = 0:0.5:300; 
    f = w/(2*pi); 
    Ty = T(1,:); 
    figure(1) 
    plot(f,Ty) 
    grid on 
    ylabel('Transmissibility') 
    xlabel('Frequency, [Hz]') 
    legend('Sprung mass bounce') 
    ylim([0;3]) 
 
    Tt = T(2,:); 
    figure(2) 
    plot(f,Tt) 
    grid on 
    ylabel('Transmissibility') 
    xlabel('Frequency, [Hz]') 
    legend('Sprung mass pitch') 
    ylim([0;3]) 
 
    Tf = T(3,:); 
    figure(3) 
    plot(f,Tf) 
    grid on 
    ylabel('Transmissibility') 
    xlabel('Frequency, [Hz]') 
    legend('Front unsprung mass bounce') 
    ylim([0;3]) 
 
    Tr = T(4,:); 
    figure(4) 
    plot(f,Tr) 
    grid on 
    ylabel('Transmissibility') 
    xlabel('Frequency, [Hz]') 
    legend('Rear unsprung mass bounce') 
    ylim([0;3]) 
     
  
        
%Plot PSD 
    figure(5) 
    plot(f,Sy) 
    grid on 
    ylabel('PSD - Acceleration') 
    xlabel('Frequency, Hz') 
    legend('Sprung mass bounce') 
 
  
    figure(6) 
    plot(f,St) 
    grid on 
    ylabel('PSD - Acceleration') 
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    xlabel('Frequency, Hz') 
    legend('Sprung mass pitch') 
 
    figure(7) 
    plot(f,Syf) 
    hold on 
    plot(f,Syr) 
    grid on 
    ylabel('PSD - Acceleration') 
    xlabel('Frequency, [Hz]') 
    legend('Front unsprung hop','Rear unsprung hop') 
    hold off 
  
  
%Natural Modes 
[X,b] = eig(inv(M)*K); 
wn = sqrt(b); %rad/s 
fn = wn./(2*pi); %Hz 
Cc = 2*sqrt(M*K); 
zeta = C./Cc; 
wd = wn.*sqrt(1-zeta.^2); 
  
%Split eigenvectors out from solution 
X1 = X(1:4,1);  
X2 = X(1:4,2); 
X3 = X(1:4,3);  
X4 = X(1:4,4); 
  
%Plotting mode shapes with scaled axis. 
nodes = [1 2 3 4]; 
mode1 = transpose(X(:,1))./max(abs(transpose(X(:,1)))); 
mode2 = transpose(X(:,2))./max(abs(transpose(X(:,2)))); 
mode3 = transpose(X(:,3))./max(abs(transpose(X(:,3)))); 
mode4 = transpose(X(:,4))./max(abs(transpose(X(:,4)))); 
  
    figure(10) 
    subplot(4,1,1) 
    plot(nodes,mode1) 
    hold on 
    grid 
    ylabel('Mode 1') 
    xlabel(['Natural Mode at ',num2str(fn(1,1)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:4) 
    subplot(4,1,2) 
    plot(nodes,mode2) 
    grid 
    ylabel('Mode 2') 
    xlabel(['Natural Mode at ',num2str(fn(2,2)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:4) 
    subplot(4,1,3) 
    plot(nodes,mode3) 
    grid 
    ylabel('Mode 3') 
    xlabel(['Natural Mode at ',num2str(fn(3,3)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:4) 
    subplot(4,1,4) 
    plot(nodes,mode4) 
    grid 
    ylabel('Mode 4') 
    xlabel(['Natural Mode at ',num2str(fn(4,4)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:4) 
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Appendix D. Eight-DOF MATLAB Model 

 

clc 
close all 
clear 
 
  
%Vehicle Dimensions 
    p = 1.4; %Wheelbase, m 
    b = 0.7; %Rear tire contact to CG, m 
    v = 17 %vi*1000/3600 %vehicle steady-state speed, m/s 
  
%Position of front and rear vibration isolators 
    xr1 = 0.320;  
    yr1 = 0.055; 
    xf1 = 0.325; 
    yf1 = 0.020; 
%Position of swingarm connection to powertrain 
    xsa = 0.270; %horizontal distance from rear tire contact point, m 
    ysa = 0.030; %vertical distance from rear tire contact point, m 
%Mass Inputs 
    m = 200; %sprung mass, kg 
    I = 38; %MOI for sprung mass, kg-m^2 
    mf = 15; %front unsprung mass, kg 
    mr = 18; %rear unsprung mass, kg 
    mp = 125; %powertrain mass, kg 
    Ip = 8; %powertrain MOI, kg-m^2 
%Damping Inputs 
  
    c1fy = 900 %front isolator equivalent vertical damping coef., Ns/m 
    c1fx = 900 %front isolator equivalent horizontal damping coef., Ns/m 
    c1ry = 900 %rear isolator equivalent vertical damping coef., Ns/m 
    c1rx = 900 %rear isolator equivalent horizontal damping coef., Ns/m  
    cpr = 0; %rear tire spring coef., Ns/m 
    cpf = 0; %front tire spring coef., Ns/m 
    cf = 900; %front shock equivalent damping coef., Ns/m 
    cr = 900; %rear shock equivalent damping coef., Ns/m 
  
%Stiffness Inputs 
    kf = 15e3; %front shock equivalent spring coef., N/m 
    kr = 24e3; %rear shock equivalent spring coef., N/m 
    k1fy = 250e3; %front isolator equivalent vertical stiffness, N/m 
    k1fx = 250e3; %front isolator equivalent horizontal stiffness, N/m 
    k1ry = 250e3; %rear isolator equivalent vertical stiffness, N/m 
    k1rx = 250e3; %rear isolator equivalent horizontal stiffness, N/m 
    kpr = 180e3; %rear tire spring coef., N/m 
    kpf = 180e3; %front tire spring coef., N/m 
 
%Mass Matrix 
M = zeros(8,8); 
    M(1,1) = m; 
    M(2,2) = I; 
    M(3,3) = mf; 
    M(4,4) = mr; 
    M(5,5) = mr; 
    M(6,6) = mp; 
    M(7,7) = mp; 
    M(8,8) = Ip; 
 
%Damping Matrix 
C = zeros(8,8); 
    %EOM 1 Checks 
    C(1,1) = cf + cr + c1fy + c1ry;  
    C(1,2) = cf*(p-b) - cr*b + c1fy*xf1 - c1ry*xr1; 
    C(1,3) = -cf;  
    C(1,5) = -cr; 
    C(1,7) = -c1fy - c1ry; 
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    C(1,8) = c1ry*xr1 - c1fy*xf1; 
    %EOM 2 Checks 
    C(2,1) = cf*(p-b) - cr*b + c1fy*xf1 - c1ry*xr1; 
    C(2,2) = cf*(p-b)^2 + cr*b^2 + c1fy*xf1^2 + c1ry*xr1^2; 
    C(2,3) = cf*(p-b); 
    C(2,5) = cr*b; 
    C(2,7) = c1ry*xr1 - c1fy*xf1; 
    C(2,8) = -c1fy*xf1^2 - c1ry*xr1^2; 
    %EOM 3 Checks 
    C(3,1) = -cf; 
    C(3,2) = -cf*(p-b); 
    C(3,3) = cf + cpf; 
    %EOM 4 ; NA 
    %EOM 5 Checks 
    C(5,1) = cr; 
    C(5,2) = cr*b; 
    C(5,5) = cpr + cr; 
    %EOM 6 Checks 
    C(6,6) = c1fx + c1rx;  
    C(6,8) = c1rx*yr1 - c1fx*yf1; 
    %EOM 7 Checks 
    C(7,1) = -c1fy - c1ry; 
    C(7,2) = -c1fy*xf1 + c1ry*xr1; 
    C(7,7) = c1fy + c1ry; 
    C(7,8) = c1fy*xf1 - c1ry*xr1; 
    %EOM 8 Checks 
    C(8,1) = -c1fy*xf1 + c1ry*xr1; 
    C(8,2) = -c1fy*xf1^2 - c1ry*xr1^2; 
    C(8,6) = c1rx*yr1 - c1fx*yf1; 
    C(8,7) = c1fy*xf1 - c1ry*xr1; 
    C(8,8) = c1fx*yf1^2 + c1fy*xf1^2 + c1rx*yr1^2 + c1ry*xr1^2; 
  
   
K = zeros(8,8); 
    %EOM 1  
    K(1,1) = kf + kr + k1fy + k1ry; 
    K(1,2) = kf*(p-b) - kr*b + k1fy*xf1 - k1ry*xr1; 
    K(1,3) = -kf; 
    K(1,5) = -kr; 
    K(1,7) = -k1fy - k1ry; 
    K(1,8) = k1ry*xr1 - k1fy*xf1; 
    %EOM 2  
    K(2,1) = kf*(p-b) - kr*b + k1fy*xf1 - k1ry*xr1; 
    K(2,2) = kf*(p-b)^2 + kr*b^2 + k1fy*xf1^2 + k1ry*xr1^2; 
    K(2,3) = -kf*(p-b); 
    K(2,5) = kr*b; 
    K(2,7) = k1ry*xr1 - k1fy*xf1; 
    K(2,8) = -k1fy*xf1^2 - k1ry*xr1^2; 
    %EOM 3  
    K(3,1) = -kf; 
    K(3,2) = -kf*(p-b); 
    K(3,3) = kf + kpf; 
    %EOM 4 
    K(4,4) = 2.3712e8; %Fxr component 
    K(4,5) = 0.2430e8; %Fxr component 
    K(4,6) = -2.3712e8; %Fxr component 
    K(4,7) = -0.243e8; %Fxr component 
    K(4,8) = -2.3712e8*ysa + 0.243e8*xsa; %Fxr component 
    %EOM 5 
    K(5,1) = -kr; 
    K(5,2) = kr*b; 
    K(5,4) = 0.243e8; %Fyr component 
    K(5,5) = kpr + kr + 0.0249e8; %Fyr component 
    K(5,6) = -0.2430e8; %Fyr component 
    K(5,7) = -0.0249e8; %Fyr component 
    K(5,8) = -0.243e8*ysa + 0.0249e8*xsa; %Fyr component 
    %EOM 6   
    K(6,4) = -2.3712e8; %Fxsa component, xr 
    K(6,5) = -0.2430e8; %Fxsa component, yr 
    K(6,6) = k1fx + k1rx  + 2.3712e8;%has Fxsa component, xp 
    K(6,7) = 0.2430e8; %Fxsa component, yp 
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    K(6,8) = k1rx*yr1 - k1fx*yf1 + 2.3712e8*ysa - 0.2430e8*xsa; %has Fxsa component, 
gamma 
    %EOM 7   
    K(7,1) = -k1fy - k1ry; 
    K(7,2) = -k1fy*xf1 + k1ry*xr1; 
    K(7,4) = -0.243e8; %Fysa component, xr 
    K(7,5) = -0.0249e8; %Fysa component, yr 
    K(7,6) = 0.243e8; %Fysa component, xp 
    K(7,7) = k1fy + k1ry + 0.0249e8; %has Fysa component, yp 
    K(7,8) = k1fy*xf1 - k1ry*xr1 +0.2430e8*ysa - 0.0249e8*xsa;%has Fysa component, gamma 
    %EOM 8  
    K(8,1) = -k1fy*xf1 + k1ry*xr1; 
    K(8,2) = -k1fy*xf1^2 - k1ry*xr1^2; 
    K(8,4) = -2.3712e8*ysa + 0.2430e8*xsa; % Fxsa*ysa - Fysa*xsa component, xr 
    K(8,5) = -0.2430e8*ysa + 0.0249e8*xsa; % Fxsa*ysa - Fysa*xsa component, yr 
    K(8,6) = k1rx*yr1 - k1fx*yf1 + 2.3712e8*ysa - 0.2430e8*xsa; %has Fxsa*ysa component 
    K(8,7) = k1fy*xf1 - k1ry*xr1 + 0.2430e8*ysa - 0.0249e8*xsa; %has Fxsa*ysa component 
    K(8,8) = k1fx*yf1^2 + k1fy*xf1^2 + k1rx*yr1^2 + k1ry*xr1^2 ... 
    + 2.3712e8*ysa^2 - 0.2430e8*xsa*ysa - 0.2430e8*ysa*xsa + 0.0249e8*xsa^2;%has Fxsa*ysa 
- Fysa*xsa component 
  
  
%Transmissibility C_prime and K_prime 
Cp = [0;0;cpf;0;cpr;0;0;0]; 
Kp = [0;0;kpf;0;kpr;0;0;0]; 
%     %Front Only Excitation 
%     Cp = [0;0;cpf;0;0;0;0;0]; 
%     Kp = [0;0;kpf;0;0;0;0;0]; 
%     %Rear Only Excitation 
%     Cp = [0;0;0;0;cpr;0;0;0]; 
%     Kp = [0;0;0;0;kpr;0;0;0]; 
     
%Transmissibility 
T=[]; 
for w=0:0.5:300 
    Tr=inv(-w^2*M+1i*w*C+K)*(Kp+1i*w*Cp); 
    T=[T abs(Tr)]; 
end 
  
freq=[0.1:0.5:300]/(2*pi); 
  
    %Plot Transmissibility 
        w = 0:0.5:300; 
        f = w/(2*pi); 
        Ty = T(1,:); 
        Tt = T(2,:); 
        Ty_max = max(Ty); 
  
        figure(1) 
        plot(f,Ty) 
        grid on 
        ylabel('Transmissibility') 
        xlabel('Frequency, [Hz]') 
        legend('Sprung mass bounce') 
        ylim([0;2.5]) 
         
                 
        figure(2) 
        plot (f,Tt) 
        grid on 
        ylabel('Transmissibility') 
        xlabel('Frequency, [Hz]') 
        legend('Sprung mass pitch') 
        ylim([0;2.5]) 
 
        figure(3) 
        Tf = T(3,:); 
        Try = T(5,:); 
        Tf_max = max(Tf); 
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        plot(f,Tf) 
        hold on 
        plot(f,Try) 
        hold off 
        grid on 
        ylabel('Transmissibility') 
        xlabel('Frequency, [Hz]') 
        legend('Front unsprung mass hop','Rear unsprung mass hop') 
 
         
        figure(4) 
        Trx = T(4,:); 
        plot(f,Trx) 
        grid on 
        ylabel('Transmissibility') 
        xlabel('Frequency, [Hz]') 
        legend('Rear unsprung mass fore-aft') 
        
        figure(5) 
        Tpx = T(6,:); 
        plot(f,Tpx) 
        grid on 
        ylabel('Transmissibility') 
        xlabel('Frequency, [Hz]') 
        legend('Powertrain fore-aft')  
         
        figure(6) 
        Tpy = T(7,:); 
        plot (f,Tpy); 
        grid on 
        ylabel('Transmissibility') 
        xlabel('Frequency, [Hz]') 
        legend('Powertrain bounce')  
         
        figure(7) 
        Tpt = T(8,:); 
        plot (f,Tpt); 
        grid on 
        ylabel('Transmissibility') 
        xlabel('Frequency, [Hz]') 
        legend('Powertrain pitch')  
 
    
  
%PSD 
Kpp = [0 0;0 0;kpf 0;0 0;0 kpr;0 0;0 0;0 0]; 
Cpp = [0 0;0 0;cpf 0;0 0;0 cpr;0 0;0 0;0 0]; 
Hs=[]; Srr=[]; 
  
k0=1; S0=16e-6;% good road surface m^2/(cycle/m) 
%k0=1; S0=1024e-6;% Very Poor road surface 
for w=0:0.5:300 
    Hr=-w^2*inv(-w^2*M+1i*w*C+K)*(Kpp+1i*w*Cpp); 
    F=[1; exp(-1i*w*p/v)]; 
    Hs=[Hs Hr*F]; 
  
    if w/v <= k0 
        n=2; 
    else 
        n=1.5; 
    end 
  
    Srr=[Srr (S0/v)*(v*k0/w)^n]; 
end 
  
w=0:0.5:300; 
  
Sy=abs(Hs(1,:)).^2.*Srr; 
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St=abs(Hs(2,:)).^2.*Srr; 
Syf=abs(Hs(3,:)).^2.*Srr; 
Sxr=abs(Hs(4,:)).^2.*Srr; 
Syr=abs(Hs(5,:)).^2.*Srr; 
Sxp=abs(Hs(6,:)).^2.*Srr; 
Syp=abs(Hs(7,:)).^2.*Srr; 
Sgp=abs(Hs(8,:)).^2.*Srr; 
S = [Sy;St;Syf;Sxr;Syr;Sxp;Syp;Sgp]; 
  
f = w/(2*pi); 
  
    figure(8) 
    plot(f,Sy) 
    grid on 
    ylabel('PSD-acceleration') 
    xlabel('Frequency, Hz') 
    legend('Sprung mass bounce') 
     
    figure(9) 
    plot(f,St) 
    grid on 
    ylabel('PSD-acceleration') 
    xlabel('Frequency, Hz') 
    legend('Sprung mass pitch') 
 
    figure(10) 
    plot(f,Syf) 
    grid on 
    ylabel('PSD-acceleration') 
    xlabel('Frequency, Hz') 
    legend('Front unsprung mass hop') 
     
    figure(11) 
    plot(f,Sxr) 
    grid on 
    ylabel('PSD-acceleration') 
    xlabel('Frequency, Hz') 
    legend('Rear unsprung mass fore-aft') 
     
    figure(12) 
    plot(f,Syr) 
    grid on 
    ylabel('PSD-acceleration') 
    xlabel('Frequency, Hz') 
    legend('Rear unsprung mass hop') 
 
    figure(13) 
    plot(f,Sxp) 
    grid on 
    ylabel('PSD-acceleration') 
    xlabel('Frequency, [Hz]') 
    legend('Powertrain fore-aft') 
     
    figure(14) 
    plot(f,Syp) 
    grid on 
    ylabel('PSD-acceleration') 
    xlabel('Frequency, [Hz]') 
    legend('Powertrain bounce') 
 
    figure(15) 
    plot(f,Sgp) 
    grid on 
    ylabel('PSD-acceleration') 
    xlabel('Frequency, [Hz]') 
    legend('Powertrain pitch') 
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%Natural Modes 
[X,L] = eig(inv(M)*K); 
%L = eig(inv(M)*K); 
wn = sqrt(L); %rad/s 
fn = wn./(2*pi); %Hz     
Cc = 2*sqrt(M*K); 
zeta = C./Cc; 
wd = wn.*sqrt(1-zeta.^2); 
  
%Mode Shapes 
X1 = X(1:8,1);  
X2 = X(1:8,2); 
X3 = X(1:8,3);  
X4 = X(1:8,4); 
X5 = X(1:8,5); 
X6 = X(1:8,6); 
X7 = X(1:8,7); 
X8 = X(1:8,8); 
  
    %Scale Mode Shapes 
    X1_R = X1/max(abs(X1)); 
    X2_R = X2/max(abs(X2)); 
    X3_R = X3/max(abs(X3)); 
    X4_R = X4/max(abs(X4)); 
    X5_R = X5/max(abs(X5)); 
    X6_R = X6/max(abs(X6)); 
    X7_R = X7/max(abs(X7)); 
    X8_R = X8/max(abs(X8)); 
  
%Plotting mode shapes with scaled axis. 
nodes = [1 2 3 4 5 6 7 8]; 
  
    figure(16) 
    subplot(8,1,1) 
    plot(nodes,X1_R) 
    hold on 
    grid 
    ylabel('Mode 1') 
    xlabel(['Natural Mode at ',num2str(fn(1,1)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:8) 
     
    subplot(8,1,2) 
    plot(nodes,X2_R) 
    grid 
    ylabel('Mode 2') 
    xlabel(['Natural Mode at ',num2str(fn(2,2)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:8) 
     
    subplot(8,1,3) 
    plot(nodes,X3_R) 
    grid 
    ylabel('Mode 3') 
    xlabel(['Natural Mode at ',num2str(fn(3,3)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:8) 
     
    subplot(8,1,4) 
    plot(nodes,X4_R) 
    grid 
    ylabel('Mode 4') 
    xlabel(['Natural Mode at ',num2str(fn(4,4)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:8) 
     
    subplot(8,1,5) 
    plot(nodes,X5_R) 
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    grid 
    ylabel('Mode 5') 
    xlabel(['Natural Mode at ',num2str(fn(5,5)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:8) 
     
    subplot(8,1,6) 
    plot(nodes,X6_R) 
    grid 
    ylabel('Mode 6') 
    xlabel(['Natural Mode at ',num2str(fn(6,6)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:8) 
    
    subplot(8,1,7) 
    plot(nodes,X7_R) 
    grid 
    ylabel('Mode 7') 
    xlabel(['Natural Mode at ',num2str(fn(7,7)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:8) 
     
    subplot(8,1,8) 
    plot(nodes,X8_R) 
    grid 
    ylabel('Mode 8') 
    xlabel(['Natural Mode at ',num2str(fn(8,8)),' Hz']) 
    ylim([-1;1]) 
    set(gca, 'xtick', 0:1:8) 
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