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Abstract 

When modeling wet weather flow in sanitary sewers the RTK method is often used. The RTK 

method converts a specified amount of rainfall into sewer flow, regardless of changes in the 

soil’s moisture content and saturation. Robert Czachorski and Tobin VanPelt (2001) sought to 

remedy this issue when they developed the antecedent moisture modeling (AMM) procedure, 

which explicitly accounts for antecedent moisture conditions. AMM tracks antecedent moisture 

using rain and temperature signals. The rain signal adds moisture to the soil according to the 

magnitude of the temperature signal. High temperatures reduce added soil moisture because 

evaporation and transpiration are higher, resulting in drier antecedent moisture conditions, while 

low temperatures do the reverse. Since 2021, AMM has been applied with great success on 

hundreds of projects (Edgren et al., 2023). AMM, in its current form as documented by 

Czachorski, Edgren and Gonwa (2023), has the potential to revolutionize sanitary sewer system 

hydrologic modeling. Nearby streams experience roughly the same antecedent moisture 

conditions as a sanitary sewer system. Is it possible that streamflow provides a better indicator 

signal of antecedent moisture conditions than temperature? The purpose of this paper is to 

explain an investigation with a focus on determining if streamflow provides a better indicator of 

antecedent moisture conditions than temperature. AMM using temperature was compared against 

AMM using streamflow, and the models were calibrated using a Bayesian Optimization 

algorithm. The results indicated that streamflow produces a comparable or better representation 

of antecedent moisture conditions. Out of the various streamflow methods, two-level models 

utilizing a large regional stream produced the lowest error. Future studies investigating 

streamflow’s ability to represent antecedent moisture should include a larger sample size of 

sewer systems in order to validate these results. 

Keywords: antecedent moisture, antecedent moisture model, wet weather flow, rainfall derived 

inflow / infiltration [RDI/I], sanitary sewers, streamflow 
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Using Stream Gages to Represent Antecedent Moisture Conditions in the 

Antecedent Moisture Model 

Sewer systems have been crucial in human civilization for thousands of years, with the 

earliest dating back to the Mesopotamian Empire in Iraq (ca. 4000 BC) (De Feo et al., 2014). At 

that time, sewer systems were nothing more than a crude drain positioned next to a street and 

have only become increasingly complex as time marches forward (De Feo et al., 2014). Sewer 

systems in the United States (US) have been constructed over a long period of time (Lai, 2008). 

The increasing age of sewers has been a concern of governmental agencies and various 

institutions in the US. A study conducted by the American Society of Civil Engineers (Black & 

Veatch, 1999) analyzed the ages of the sewers in the collection system of 42 wastewater utilities 

across the US. The wastewater utilities included in the study ranged in age from 117 years old to 

new with the average age of sewers being 33 years (Black & Veatch, 1999). The distribution of 

the sewers’ ages was analyzed in the study, which found that 18.2% of sewers were 0 to 10 years 

old, 22.8% were 11 to 20 years old, 41.1% were 21 to 50 years old, 16.4% were 51 to 100 years 

old, and 1.6% were greater than 100 years old. Since that study took place 24 years ago, the 

average age is surely much higher now. Lai (2008) states, “Older sewers were constructed 

mainly of vitrified clay, brick, and concrete, while modern sewers were constructed of plastic, 

ductile iron, steel, and reinforced concrete” (p. 1).  

Older sewers constructed of clay, brick, and concrete are more susceptible to 

deterioration than modern sewers (Lai, 2008). Over time, deterioration causes cracks and 

openings in the sewer’s structure, allowing extraneous water sources to enter the system. 

Intrusive water that invades sewer systems is referred to as rainfall derived inflow / infiltration 

(RDI/I) and it causes increased flows in sanitary sewer systems. RDI/I can be introduced to the 
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system from various sources, including stormwater, meltwater, and groundwater. When a sewer 

experiences increased flow conditions as a result of RDI/I, the sewer is considered to be in a 

period of a wet weather flow (WWF). WWF is difficult to model, predict, quantify, and control. 

Hydrologic models that are able to accurately relate the quantity of rainfall to WWF are 

imperative in the design of strategies that limit the environmental and public health impacts of 

excessive sanitary sewer system WWF. 

Currently the US Environmental Protection Agency (US EPA) encourages the use of the 

RTK method for modeling WWF based on a review of available WWF prediction methods in 

sanitary sewers (Lai, 2008). The RTK method has since been implemented in the EPA’s Storm 

Water Management Model (SWWM), which is used frequently in the field of hydrology. The 

RTK method assumes a constant capture fraction, meaning that a constant percentage of rainfall 

volume is converted to RDI/I (Walski, 2021). However, a constant capture fraction does not 

accurately represent reality. The capture fraction of a given catchment area fluctuates during 

WWF periods, increasing with the system’s moisture conditions. These fluctuations are not 

considered by this method, but instead, its parameters are changed depending on the time of year. 

Parameters are typically designated by month, increasing the number of calibratable parameters 

by up to a factor of twelve. While helpful, monthly parameters do not address short term 

fluctuations in a system’s capture fraction during an RDI/I event. Depending on the antecedent 

moisture conditions, the volume of RDI/I response experienced by a sewer system can increase 

by orders of magnitude, requiring a hydrologic modeling method that continuously incorporates 

continuously varying antecedent moisture (W. Gonwa, personal communication, March 17, 

2023). 
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 The difficulty of modeling WWF in sanitary sewers lies in accurately representing the 

antecedent moisture conditions of a sewer’s catchment area. In an effort to address this, Robert 

Czachorski and Tobin Van Pelt (2002) developed a model with the ability to track and predict 

antecedent moisture conditions and seasonal effects, aptly naming the procedure antecedent 

moisture modeling (AMM). AMM utilizes rainfall and temperature signals to track the 

antecedent moisture conditions of the catchment area in question. The rain signal adds moisture 

to the system while the temperature signal determines the magnitude of the rain signal. High 

temperatures reduce added soil moisture due to evaporation and transpiration being higher, while 

low temperatures increase added soil moisture for the opposite reason. AMM’s ability to actively 

track the hydrologic conditions of a catchment area allows it to continuously model sewer flow 

over a long period of time, unlike some other RDI/I methods, which are event based (i.e., they 

model on a storm-by-storm basis). Since its creation, AMM has been utilized in hundreds of 

projects and has demonstrated its ability to accurately simulate antecedent moisture dynamics 

(Edgren et al., 2023).  

While the rainfall signal in AMM is a direct measure of the rainfall volume falling over 

the catchment area, the temperature signal is an indirect measure of the evaporation, 

transpiration, and soil moisture. Is it possible that streamflow could be a more accurate indicator 

signal of antecedent moisture conditions than temperature in AMM? Streams are directly 

impacted by antecedent moisture conditions and experience roughly the same antecedent 

moisture conditions as nearby sanitary sewer systems. Additionally, streamflow data have been 

collected for decades by the United States Geological Survey (USGS) scientific agency and other 

federal, state, and local agencies making it widely available over long periods of time (W. 

Gonwa, personal communication, May 16, 2022). If streamflow were used in place of 
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temperature, what method of implementing streamflow in AMM is the most proficient? This 

paper seeks to provide the answers to these questions through an exploration of streamflow as an 

indicator of antecedent moisture conditions in AMM. 

Background 

 To better understand the data, concepts, and nomenclature being used in regard to the 

implementation of streamflow in AMM, additional questions must be answered. What is the 

difference between a sanitary sewer and a combined sewer? What causes RDI/I, and what is it 

comprised of? What is antecedent moisture, and what are its effects on RDI/I? What components 

make up sanitary sewer flow? What are hydrographs, and what information can we derive from 

them? How is the AMM procedure structured, and what are its underlying equations? How will 

streamflow be implemented into AMM? Which streams and sewers will be analyzed in this 

study? What is Bayesian optimization and how was it used to assist in model calibration? The 

answers to these questions will prepare the reader for the methodology and results sections, in 

which the following concepts will be utilized to implement streamflow into AMM and analyze 

its proficiency compared to temperature based antecedent moisture models. 

Sanitary Sewers and Combined Sewers 

 A literature review by the Office of Water Programs at the California State University 

Sacramento (Office of Water Programs, 2008) states “There are two types of public sewer 

systems used in the United States for collecting and conveying sanitary sewage, combined sewer 

systems and sanitary sewer systems” (p. 1). Combined sewer systems collect stormwater runoff 

through street drains and other stormwater inflow locations while simultaneously collecting 

wastewater flows from commercial, residential, and public structures. Sanitary sewer systems 

only collect the wastewater portion of flows along their flow route. Because sanitary sewer 
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systems only collect wastewater flows, they are usually paired with stormwater sewers, which 

are designed specifically for conveying stormwater runoff. When a sanitary sewer and 

stormwater sewer are utilized in tandem, it is commonly referred to as a separated sewer system 

(Village of Shorewood, WI, 2009). Figure 1 displays a diagram of a typical separated sewer 

system. 

Figure 1  

Diagram of Typical Separated Sewer System in Shorewood, WI 

 

Note. Adapted from “Sanitary Sewer Systems”, by Village of Shorewood, Wisconsin, 2009, para.1 

(https://www.villageofshorewood.org/884/Sanitary-Sewer-System). 

 This paper focuses only on sanitary sewer systems because antecedent moisture is a much 

more important factor in sanitary sewer WWF than in combined sewers. 

  

https://www.villageofshorewood.org/884/Sanitary-Sewer-System
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Rainfall Derived Inflow / Infiltration 

 Rainfall derived inflow / infiltration, commonly referred to as I/I and RDI/I, is made up 

of two components. The first is inflow, which accounts for open pathways allowing water into 

the sanitary sewer such as roof drain connections, uncapped cleanouts, and faulty manhole 

covers (WEF Collection Systems Committee, 2017). Some components of inflow are allowed by 

local ordinances, such as preordinance foundation drain connections that tie directly into the 

sanitary sewer.  

The second component of RDI/I is infiltration. Infiltration in RDI/I consists of 

stormwater that infiltrates into the ground and enters a sanitary sewer system through cracks, 

faulty lateral connections, or root intrusions (WEF Collection Systems Committee, 2017). Figure 

2 contains a diagram depicting the various routes that RDI/I’s inflow and infiltration components 

can take to enter sewers. Older sewer systems in need of rehabilitation experience large 

quantities of rainfall induced infiltration due to their outdated materials and construction methods 

(Lai, 2008). Vitrified clay, a common material used in older sewers, is brittle in tension and 

prone to developing cracks over time, allowing large quantities of rain induced infiltration into 

sanitary sewers (Lai, 2008).  
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Figure 2  

Typical Sources of RDI/I in Sanitary Sewer Systems 

 

Note. Adapted from Sanitary Sewer Systems: Rainfall Derived Infiltration and Inflow (RDI/I) Modeling Fact 

Sheet, 2017, p. 1 (https://www.wef.org/globalassets/assets-wef/direct-download-library/public/03---

resources/wsec-2017-fs-001-RDI/I-modeling-fact-sheet---final.pdf). 

 RDI/I causes sanitary sewers to experience increased flows that they are not designed to 

handle, contributing to sanitary sewer overflows (SSOs), which releases disease causing 

pathogens into the environment among other environmental concerns (Lai, 2008). The release of 

these pathogens influences the public agenda in multiple ways. In a report for the EPA, Fu-

hsiung Lai states that 

https://www.wef.org/globalassets/assets-wef/direct-download-library/public/03---resources/wsec-2017-fs-001-rdii-modeling-fact-sheet---final.pdf
https://www.wef.org/globalassets/assets-wef/direct-download-library/public/03---resources/wsec-2017-fs-001-rdii-modeling-fact-sheet---final.pdf
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SSO effects are many, including: (1) closing of beach and recreational areas; (2) 

prevention of fishing and shellfish harvesting; (3) public health risks associated with raw 

sewage in roadways, drainage ditches, basements, and surface waters; (4) inhibition of 

potential development from sewer connection moratoriums; and (5) financial liability of a 

community from public relation problems. In San Diego, CA, SSOs threatened drinking 

water supplies, creating the potential for serious adverse public health impact (Golden, 

1996). (Lai, 2008, p. 2) 

RDI/I also reduces the capacities of wastewater treatment plants (WWTPs). Stormwater that 

invades sanitary sewers as RDI/I comingles with sewage flows, forcing WWTPs to increase their 

loads while treating water that does not require treatment (Rödel et al., 2017). 

Antecedent Moisture 

 RDI/I is influenced by the antecedent moisture condition of the environmental system it 

exists within. In his Master of Science in Civil Engineering Capstone project report, Dennis 

Weiland describes antecedent moisture as: 

How precipitation reacts depends on the water deficit. Was the system already dry or 

oversaturated? Is there surface water present to evaporate? Has ground water had time to 

settle, or is it above the normal levels? These conditions are summed together as 

antecedent moisture. Antecedent moisture is the preceding moisture condition of an 

environment. It is a complex representation of the relative wetness or dryness in the soil, 

also known as the soil moisture deficit. The wetness of the soil is impacted by many 

variables. Elevation, soil type, seasonal precipitation, impervious surfaces, temperature 

and more work together to define the state of the soil moisture deficit. At low 



USING STREAM GAGES TO REPRESENT ANTECEDENT MOISTURE 16 

 

temperatures, it is expected that there will be higher soil moisture content in the ground 

and less evapotranspiration and greater runoff will occur. (Weiland, 2020, p. 7) 

The soil moisture deficit is an important factor of antecedent moisture and tends to change with 

the seasons. A lack of moisture deficit means the soil is more saturated, making it difficult for 

the soil to absorb water (Viessman et al., 1989). Colder seasons such as late fall, winter, and 

early spring have little to no soil moisture deficit, which results in rainwater not being absorbed 

by the soil. Instead, it infiltrates through the soil and joins the water table. Colder seasons tend to 

experience higher water table elevations due to the lack of moisture deficit impacting the 

antecedent moisture conditions. This results in higher volumes of RDI/I entering sewers through 

infiltration routes. During the warmer seasons of late spring and summer, the moisture deficit 

increases due to the increased evaporation and transpiration removing moisture from the soil. 

This results in stormwater being absorbed more readily as it infiltrates the soil, resulting in less 

water reaching the water table. Thus, RDI/I in warmer seasons primarily enters sewers through 

inflow routes. 

 Rain events themselves greatly impact antecedent moisture conditions and can compound 

to create intense RDI/I responses in sewer systems. For instance, if a rainfall event were to occur 

in the hot summer month of July when the soil moisture deficit is high, a higher percentage of 

precipitation would be absorbed by the soil and stored there due to its dry condition. However, if 

a rainfall event occurs in the day directly after the previous rainfall event, the precipitation will 

be falling during wet antecedent moisture conditions due to the ground remaining moist from the 

day prior. The moisture deficit is now lower, resulting in less moisture being absorbed by the soil 

and consequently higher volumes of infiltration are able to enter sewers. Compounding rainfall 

events also leads to higher quantities of RDI/I through inflow routes due to the soil’s ability to 
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absorb rainfall decreasing with each subsequent storm. Figure 3 displays an example of 

compounding rain events of similar magnitude leading to increasingly higher RDI/I volumes due 

to antecedent moisture conditions (Czachorski et al., 2022). 

Figure 3  

Increasing RDI/I Volumes due to Compounding Rainfall Events 

 

Note. Adapted from “AMM users conference”, by R. Czachorski, D. Edgren, E. Morgan, & W. Gonwa, 

2022, H2Ometrics (https://h2ometrics.com/amm-users-conference-2022/). 

Sewer Flow Hydrographs and their Components 

Hydrographs are the standard method for representing the flow of water over time in 

hydrology. They are graphs that display the flow or depth response in a sewer or waterway 

caused by hydrologic events such as rainfall and snowmelt over an area of land versus time, 

usually designated by a watershed. In Introduction to Hydrology, a watershed is defined as “the 

land area over which rain falls that contributes surface runoff to any point of interest” (Viessman 

https://h2ometrics.com/amm-users-conference-2022/
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et al., 1989, p. 153). This study focuses entirely on sewer catchments, a type of watershed. A 

sewer catchment refers to the land area over which rain falls that contributes to a sewer’s flow 

through RDI/I. Figure 4 displays an example of a sanitary sewer hydrograph, with its 

components denoted. 

Figure 4  

Example Sanitary Sewer Hydrograph 

 

Note. Figure 4 displays a typical sanitary sewer hydrograph, created using data received from MMSD. 

 

The hydrograph displayed in Figure 4 has many terms that relate to its overall structure, 

and they are defined below. 
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1. Rainfall: The line graph shaded green situated at the top left of Figure 4 represents the 

amount of rainfall that occurred during the hydrograph’s timeframe. The rainfall is 

measured in units of inches per hour and provides an accurate estimate of the total 

volume of water introduced to the sewer’s catchment area.  

2. Excess Rainfall: The hatched area of the rainfall line graph represents the excess rainfall. 

Excess rainfall is the volume of rain that elicits a response in the sewer. In sanitary sewer 

systems, excess rainfall is a small fraction of total rainfall. 

3. Inflow (Fast Response): The portion of the hydrograph that is comprised of the inflow 

component of RDI/I. Inflow represents water traveling along routes that are unimpeded 

or open, meaning it reaches the sewer much faster than infiltration routes. Therefore, the 

inflow is considered the fast response in the sewer system. It rises and falls quickly, 

forming the peak of RDI/I responses. 

4. Infiltration (Slow Response): Infiltration represents water that isn’t absorbed by the soil 

and makes its way into the sewer through infiltration routes. These flows slowly move 

through soil until they enter the sewer, and therefore, they are considered the slow 

response. Infiltration typically peaks in magnitude later than the inflow component as a 

result. Sewer catchment areas consisting mostly of rural land use and less impervious 

cover experience larger volumes of infiltration. The total volume of inflow and 

infiltration equals the volume of excess precipitation. 

5. Lag-time: The elapsed time between the centroid of excess rainfall and the peak of sewer 

flow. The lag-time is an indicator of how quickly a sanitary sewer will experience peak 

flow conditions following a rainfall event. Sewers with catchment areas mostly consisting 
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of urban land use typically experience shorter lag-times due to an abundance of 

impervious surfaces leading to more water invading sewers through inflow routes.  

6. Hydrograph half-life (HHL): The elapsed time between the peak flow value of a sewer’s 

RDI/I response and a flow value of half the peak’s magnitude. HHL is an indicator of a 

sewer catchment area’s characteristics, with a shorter HHL indicating the sewer 

catchment is more uniform in shape or smaller in size than a catchment area with a higher 

HHL. 

7. Diurnal flow: Represents the flows experienced by a sanitary sewer due to residential, 

commercial, and industrial wastewater or greywater. Diurnal flow, as evidenced by its 

name, varies on a daily basis. There is slight variation throughout the week as well, with 

weekends seeing higher peak flows than weekdays. 

8. Groundwater infiltration: Groundwater fluctuations that occur over a long period of time, 

resulting in slightly increased sewer flow. Separate from the infiltration flow caused by 

RDI/I events. 

Characteristics of a sewer’s catchment area influence how quickly water reaches the 

sewer and the magnitude of the flow observed. The size of a catchment will influence the 

quantity of RDI/I observed, with larger catchments experiencing greater amounts of RDI/I due to 

water being captured over a greater area than smaller catchments (Cretu et al., 2005). The shape 

of a catchment area determines how quickly RDI/I can be conveyed to a sewer’s metering point. 

Long, narrow catchment areas take longer to convey the RDI/I to a metering point due to the 

long distances the runoff must travel, resulting in higher times of concentration and lag (Cretu et 

al., 2005). Catchment areas that have more uniform shapes akin to circles have lower times of 
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concentration and lag because the average flow path is shorter that the runoff must travel along. 

(Cretu et al., 2005). 

Components of Sanitary Sewer Flow 

 Sanitary sewer systems experience flows from a myriad of different sources. They can be 

split up into two different categories, dry weather flow (DWF) and wet weather flow (WWF). 

DWF includes components of sewer flow present during dry weather, absent of rainfall events. 

DWF is generally considered the normal flow state of a sanitary sewer system, uninfluenced by 

extraneous flow. WWF is experienced whenever extraneous water sources find their way into a 

sanitary sewer system, causing an RDI/I response in the sewer. WWF consists of the flows that 

make up RDI/I, inflow and infiltration. A diagram displaying the components of sanitary sewer 

flow can be seen in Figure 5. 

Figure 5  

Sanitary Sewer Flow Components 
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Sanitary Sewer Dry Weather Flow Component 

DWF includes diurnal flow and groundwater infiltration (GWI). DWF is explained well 

by Fu-hsiung Lai in a report developed for the EPA: 

The [DWF] component primarily includes sanitary flow contribution from residential, 

commercial, industrial, and institutional users. [DWF] rates typically vary throughout the 

day, with the peak flow generally occurring during the morning hours. It also includes 

some amount of groundwater infiltration (GWI), particularly in areas where groundwater 

table is high. (Lai, 2008, p. 6) 

The portion of GWI that occurs during dry weather is a result of long-term fluctuations in 

groundwater elevations throughout the changing seasons. During spring months when wet 

antecedent moisture conditions are more common, groundwater levels are elevated, resulting in 

more of it infiltrating into sewers (Lai, 2008). The magnitude of GWI experienced by a sanitary 

sewer system is proportional to the number of defects present in the sewer and their sizes (Lai, 

2008).  

Sanitary sewer system design typically calculates diurnal flow based on a per capita 

flowrate estimate for each resident the system is servicing (Zanoni & Rutkowski, 1972). It is the 

first component of flow considered in the sizing of a sanitary sewer since it’s relatively 

predictable due to swathes of historical data existing for sewage flow by capita (Zanoni & 

Rutkowski, 1972). However, sanitary sewer system design must account for extraneous flows 

experienced during WWF as well. 
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Sanitary Sewer Wet Weather Flow Component 

 Whenever a rainfall event occurs near a sanitary sewer system, WWF begins during or 

shortly after. The delay in the start of WWF conditions depends on the characteristics of the 

watershed the sewer is a part of. Sanitary sewer systems that have catchment areas with longer 

lag-times will experience WWF later than sewers with catchment areas possessing shorter lag-

times. A hydrograph displaying the typical flow components of a sanitary sewer system, 

including WWF, was pictured in the sewer flow hydrographs and their components section in 

Figure 4. 

WWF consists of additional extraneous flows that invade sewers during or after rainfall 

and snowmelt. These extraneous flows are RDI/I, whose components influence the sewer’s 

hydrograph at differing speeds. Inflow sources of RDI/I are the first to contribute to the sanitary 

sewer’s flow as they enter through open pathways with little to no resistance (WEF Collection 

Systems Committee, 2017). This is exemplified in Figure 4 by the large spike in sewer flow after 

the majority of rainfall has occurred. After RDI/I’s inflow component has entered the sewer 

system, the infiltration component slowly enters through cracks, faulty connections, and root 

intrusions (WEF Collection Systems Committee, 2017). Infiltration is slowly added to the 

sanitary sewer’s flow and results in a gradual decay in sewer flow as its volume is depleted. 

RDI/I plays a large role in sanitary sewer flow during WWF and must be accounted for during 

the sewer design process to limit SSOs and increased WWTP loads (Sola et al., 2020). Modeling 

the RDI/I components of WWF utilizing AMM will be the main focus of this paper. 

Antecedent Moisture Modeling 

 Antecedent moisture modeling is a procedure created by Robert Czachorski and Tobin 

Van Pelt that estimates a time series of a sanitary sewer’s RDI/I flow at a specified outlet based 
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on a moving average precipitation and ambient air temperature over the watershed (Van Pelt & 

Czachorski, 2002). AMM’s first iteration was introduced to the public domain in 2021; however, 

it has since been updated and reparametrized (Edgren et al., 2023). In a manuscript submitted for 

publication, Edgren et al. (2023) describe the four types of enhancements to AMM’s first 

iteration: 

1. Improving physical relatability – Reparameterized the original model so that the 

parameters are intuitively understandable to users and the units are explicitly stated. 

2. Creating scale independence – With the original equations, scaling a calibrated AMM 

model to a catchment of a different size requires scaling 3 different parameters. The 

new parameterization explicitly includes catchment area which allows direct 

comparisons in parameter values between differently-sized catchments. 

3. Creating timestep independence – With the original equations, some parameters were 

timestep dependent, requiring conversion to different timestep. The new equations 

have parameters that are independent of timestep. 

4. Updating nomenclature – Some minor improvements were made to make the 

nomenclature simpler and more intuitive. (Edgren et al., 2023, p. 3) 

The focus of this paper will therefore lie entirely on the new parameterization of AMM as it is 

the most current form of the AMM procedure. 

 AMM consists of three levels, with each level containing its own set of equations. Each 

level’s output feeds into the subsequent level, with Level 3 feeding into Level 2, and Level 2 

feeding into Level 1. Level 1 contains the final set of equations computed and outputs the 

predicted flow series. The equations given by Edgren et al. (2023) are 
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Q
t
 = A * (RD + 

 RWt+ RWt-1

2
)  * MAPt * 

(1-SF)

∆t
 + SF * Q

t-1
,   (1) 

SF = 0.5 (∆t/HHL),        (2) 

MAPt = 
1

PAT

∆t
 + 1

 ∑ Pt-i

PAT

∆t
 +1

i=1
,       (3) 

where 

 Qt = Flow rate at the current time step t [L3/T], 

 A = Catchment area [L2], 

 RD = minimum rainfall capture fraction during dry weather [%], 

 RWt = Additional rainfall capture fraction during wet weather [%], 

 SF = Constant shape factor of hydrograph, bounded by [0,1], 

 Δt = Model time step [T], 

 Qt-1 = Flow rate at the previous time step t–1 [L3/T], 

 MAPt = Moving average incremental precipitation at time step t, [L], 

 PAT = Precipitation averaging time of the catchment (integer multiple of Δt) [T], 

Pt-i = Incremental precipitation starting at time step t–i, where i varies from 1 to 

PAT/Δt+1 [L], 

 HHL = Hydrograph half-life [T]. 
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The parameter RWt changes over time, allowing the wet weather capture fraction to adjust to the 

catchment area’s changing moisture conditions. Therefore, RWt is a time series and is 

determined by the Level 2 equations of AMM. 

 Level 2 of AMM is calculated as an intermediate step between Levels 1 and 3 and 

determines the impact of antecedent moisture on the RWt time series. Level 2’s equation set 

produces the RWt time series and the equations given by Edgren et al. (2023) are 

RWt = 
(AMRF-1)

ln(AMRF)
* SHCFt * MAPt + AMRF * RWt-1 ,    (4) 

AMRF = 0.5
(∆t/AMHL)

,        (5) 

where 

 RWt-1 = Additional wet weather rainfall capture fraction at the previous time step t-1 [%], 

 SHCFt = Seasonal hydrologic condition factor at current time step t [1/L], 

 AMRF = Constant antecedent moisture retention factor, bound by [0,1], 

 AMHL = antecedent moisture half-life [T]. 

The AMHL is a calibratable parameter that determines how quickly the system dries, effectively 

representing the duration of antecedent moisture effects on the system (Edgren et al., 2023). The 

SHCFt changes with respect to the moving average temperature series (MATempt) of the 

catchment area and is calculated in Level 3 of AMM. 

 Level 3 of AMM is the first set of equations to be calculated and produces the seasonal 

hydrologic condition factor time series (SCHFt). The SHCFt is the driving time series for the 
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RWt time series and determines how quickly the RWt time series increases due to rainfall. The 

equations given by Edgren et al. (2023) are 

SHCFt = [
L

1 + e(-k {MATempt - xo})
]  + Cold SHCF - 

11

12
L,   (6) 

L = 1.2 × (Cold SHCF - Hot SHCF),     (7) 

k = [
4.7964

(Cold Temp - Hot Temp)
],      (8) 

x0 = 
(Cold Temp + Hot Temp)

2
,      (9) 

MATemp
t
  =  

1
TAT

∆t
 + 1

 ∑  Temp

TAT

∆t
 + 1

i=1 t-i
,     (10) 

where 

 Cold SHCF = Cold seasonal hydrologic condition factor value from Point 1 [1/L], 

 Hot SHCF = Hot seasonal hydrologic condition factor value from Point 2 [1/L], 

 Cold Temp = Cold temperature value from Point 1 [Temp], 

 Hot Temp = Hot temperature value from Point 2 [Temp], 

 MATempt = Moving average temperature at time step t [Temp], 

 TAT = Temperature averaging time of the catchment (increments of Δt) [T], 

 Tempt-i = Air temperature at time step t-i, where i varies from 0 to TAT/Δt [Temp], 

 L = Range of variation of the seasonal hydrologic condition factor [1/L], 

 x0 = Midpoint between the hot and cold temperature values [Temp], 
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 k = Factor indicating the sigmoid function steepness [1/Temp], 

Point 1 = location in sigmoid function that represents 11/12 of maximum range of 

seasonal hydrologic condition factor (see Figure 6), 

Point 2 = location in sigmoid function that represents 1/12 of maximum range of seasonal 

hydrologic condition factor (see Figure 6). 

Figure 6  

Sigmoid Function Representing the Variation of the SHCF in AMM 

 

Note. Adapted from “AMM Users Conference”, by R. Czachorski, D. Edgren, E. Morgan, and W. Gonwa, 

2022, H2Ometrics. Retrieved from https://h2ometrics.com/amm-users-conference-2022/. The graph 

shows a sigmoid curve, which represents the SHCF that corresponds to the timestep’s temperature. Point 

1 and 2 on the curve are determined by parameters input by the user, the cold and hot SHCF. As 

temperature increases, the SHCF decreases. 

https://h2ometrics.com/amm-users-conference-2022/
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 When the SHCF increases due to colder temperatures, the RWt time series increases 

rapidly in response to additional rainfall (Edgren et al., 2023). Conversely, when the SHCF 

decreases due to hotter temperatures the RWt time series requires more rainfall to increase by a 

similar amount (Edgren et al., 2023). 

 A diagram explaining how each level feeds into the next in AMM is displayed in 

Figure 7. 
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Figure 7  

AMM Overview Schematic 

 

Note. Adapted from D. Edgren, R. Czachorski, and W. Gonwa, 2023, Reparameterizing the antecedent 

moisture model [Manuscript submitted for publication]. 

Utilizing AMM to accurately predict RDI/I flows to sanitary sewers typically involves the use of 

two different flow types, which are then summed to represent the total WWF hydrograph. 

Usually designated as fast and slow response, they represent the inflow and infiltration 

components of RDI/I, respectively. Each flow is calculated using the three levels of AMM, and 

each have their own set of parameters listed in the equations above. However, many parameters 
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are either fixed or calculated during calibration such as the catchment area, A, in Equation (1) or 

the range, L, in Equation (7). Edgren et al. (2023, p. 9) state that there are six parameters 

typically calibrated during AMM, including: 

1. RD – Rainfall Capture Fraction during very dry conditions 

2. PAT – Precipitation averaging time 

3. HHL – Hydrograph recession time 

4. AMHL – Drying time; duration of antecedent moisture effect 

5. Cold SHCF – Unit increase in Rainfall Capture Fraction in winter 

6. Hot SHCF – Unit decrease in Rainfall Capture Fraction in summer. 

Calibration of the aforementioned parameters was the main method of producing comparable 

results between temperature-based AMM and AMM using streamflow signals.  

Implementation of a Streamflow Signal in Antecedent Moisture Modeling 

 The implementation of a streamflow signal in AMM was achieved through two methods. 

The first method implemented was the two-level method, which scales a streamflow time series 

to a value between 0 to 1, with 0 being the minimum of the time series and 1 being the 

maximum. The second method implemented was the three-level method, which scales a 

streamflow time series to a value between 30 to 70 to represent the temperature time series in the 

third level of AMM. The 30 value represents the maximum value of the streamflow time series 

while 70 represents the minimum, following the standards of temperature-based AMM, which 

sees a higher SHCF when temperatures are lower. 
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Two-Level Streamflow Method 

 The reason this method is called the two-level method is due to the fact that it utilizes 

only the first two levels of AMM. The two-level method’s scaled streamflow value, which 

ranges between 0 to 1, eliminates the need for the SHCF time series created by the third level of 

AMM. The two-level method’s equations are 

RWt = RWmax * Scaled MAS𝐹𝑡
2,    (11) 

Scaled MAS𝐹𝑡
2=

MASFt-MASFmin

MASFmax-MASFmin
,    (12) 

MASF𝑡 = 
1

SAT

∆t
 + 1

 ∑ SFt-i

SAT

∆t
 +1

i=1
 ,    (13) 

where 

 RWmax = Maximum wet weather capture fraction designated by user [%], 

Scaled MASF2
t = Moving average of streamflow time series at timestep t, scaled to a 

value between 0 and 1 (the exponent 2 designates this as the two-level 

scaled MASFt parameter) [%], 

MASFt = Moving average of streamflow time series at timestep t [L3/T], 

MASFmin = Minimum of MASFt [L
3/T], 

MASFmax = Maximum of MASFt [L
3/T], 

SFAT = Streamflow averaging time of the catchment (increments of Δt) [T], 

SFt-i = Streamflow at time step t-i, where i varies from 0 to SFAT/Δt [L3/T]. 
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In this method, Equation (11) replaces Equation (4) in temperature-based AMM, and the scaled 

MASF2
t time series represents the SHCF time series utilized in temperature-based AMM. 

Equation (1) is retained as the first level output equation in this method. The two-level method 

assumes that as the catchment area’s antecedent moisture conditions grow wetter, the MASFt 

parameter increases. Therefore, a scaled MASFt value of 0 represents the minimum flow value of 

the MASFt time series while a value of 1 represents the maximum flow value. 

 The two-level method removes the need for a third level equation set, thus reducing the 

number of calibratable parameters from six to four. The four calibratable parameters of the two-

level method include: 

1. RD – Rainfall capture fraction during very dry conditions 

2. RDWmax – Maximum rainfall capture fraction during wet conditions 

3. HHL – Hydrograph recession time 

4. PAT – Precipitation averaging time. 

Three-Level Streamflow Method 

 Like the two-level method, the three-level method’s name stems from the fact that it 

utilizes all three levels of temperature-based AMM. In the three-level method, the moving 

average streamflow time series, MASFt, is scaled to a range of 30 to 70 and replaces the moving 

average temperature time series input, MATempt, in Equation (6) of temperature-based AMM. 

The three-level method’s equations are 

SHCFt = [
L

1 + e(-k {𝑆𝑐𝑎𝑙𝑒𝑑 𝑀𝐴𝑆𝐹𝑡
3 - xo})

]  + Cold SHCF - 
11

12
L  (14) 

and 
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𝑆𝑐𝑎𝑙𝑒𝑑 𝑀𝐴𝑆𝐹𝑡
3 = 70 − [

𝑀𝐴𝑆𝐹𝑡−𝑀𝐴𝑆𝐹𝑚𝑖𝑛

𝑀𝐴𝑆𝐹𝑚𝑎𝑥−𝑀𝐴𝑆𝐹𝑚𝑖𝑛
∗ 40].   (15) 

The three-level follows the same assumption as the two-level method, in that the catchment 

area’s antecedent moisture conditions grow wetter as the MASFt increases. It follows the same 

standards as temperature-based AMM. As the MASFt increases, the scaled MASF3
t emulates the 

temperature signal by decreasing in magnitude. Therefore, as the streamflow signal increases in 

magnitude, the SHCFt increases as well, correlating increasing streamflow to increasingly wet 

antecedent moisture condition. 

 The three-level method utilizes the same number of calibratable parameters as 

temperature-based AMM. The only difference lies in the replacement of temperature-based 

AMM’s temperature averaging time parameter, TAT, with the three-level method’s streamflow 

averaging time parameter, SFAT. However, TAT is typically fixed early on in the AMM 

calibration process; thus, SFAT isn’t a calibratable parameter. Therefore, the six calibratable 

parameters of the three-level method include: 

1. RD – Rainfall Capture Fraction during very dry conditions 

2. PAT – Precipitation averaging time 

3. HHL – Hydrograph recession time 

4. AMHL – Drying time; duration of antecedent moisture effect 

5. Cold SHCF – Unit increase in Rainfall Capture Fraction in winter 

6. Hot SHCF – Unit decrease in Rainfall Capture Fraction in summer. 

Bayesian Optimization 

 Bayesian optimization is an algorithm that can be employed in a variety of different 

coding languages. MATLAB was the coding language chosen to implement the Bayesian 
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optimization algorithm to assist in the calibration of various AMM parameters. The algorithm is 

based on Bayes’ theorem, which was conceived by the British mathematician Thomas Bayes in 

1763 (Hayes, 2022). Bayes’ theorem’s core principle lies in determining conditional probability, 

which is the likelihood of an outcome occurring based on a previous outcome having occurred in 

similar circumstances (Hayes, 2022). According to Hayes (2022), “Bayes' Theorem states that 

the conditional probability of an event, based on the occurrence of another event, is equal to the 

likelihood of the second event given the first event multiplied by the probability of the first 

event” (para. 18). 

Essentially, the Bayesian optimization algorithm allows for automated calibration of 

AMM parameters. The user specifies the main function for the algorithm to input its parameters, 

as well as specifying a range for the given parameters. The algorithm then guesses a random 

value for each parameter in the given ranges, and uses a loss function that, in this case, displays 

the average error value of the observed flow versus the predicted flow. It is an iterative process, 

and initially the error increases while the algorithm inputs random values of the user-specified 

range. However, an increasing error value allows the algorithm to determine that the values it is 

attempting are straying further from its goal, the lowest achievable error value utilizing the 

parameters and their given ranges. The algorithm can then start to either lower or raise certain 

values of the parameters based on the outcomes of its previous guesses, assembling a probability 

of what its most optimal next guess is.  

For instance, the Bayesian optimization algorithm may initially guess that a catchment 

area has a RD value of 0.5. The error value increases, and subsequently a guess of 0.6 is made. 

The error value increases again, allowing the algorithm to understand that increasing the RD 

parameters correlates with an increase in error. Therefore, its next guess is 0.45, which lowers 
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the error value. This process repeats until the algorithm has performed a set number of iterations 

defined by the user. This process is useful for determining AMM parameters when fast and slow 

flow types are utilized, which doubles the number of calibratable parameters. Bayesian 

Optimization greatly assists in the calibration of parameters that are more difficult to calibrate 

such as the Cold / Hot SCHF, PAT, and RWmax. 

Study Area Properties and Metering Locations 

 The Milwaukee area was designated as the study area of this paper due to the abundance 

of available data for the area’s sanitary sewer flows, streamflows, and rain gages. Two sanitary 

sewers were selected for analysis, sewers MS0453 and MS0456. The two sewers were chosen 

due to their stark difference in average flowrates. MS0453 experienced average hourly flowrates 

of 2.56 cubic feet per second (cfs) throughout 2018 while MS0456 experienced only 0.32 cfs. 

Similarly, the catchment areas for each of the sewers were representative of their average flows, 

with MS0453 and MS0456 having catchment areas of 11,305 and 340 acres, respectively. The 

sewer’s catchment areas also differ in land use, with MS0453’s catchment area containing a 

mixture of rural and urban residential while MS0456’s catchment area is entirely urban 

residential. Two rain gages, WS1214 and WS1224, were selected due to their proximity to the 

sewer’s catchment areas. The rain gages and sewer metering locations as well as the sewer’s 

catchment areas are depicted in Figure 8. 
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Figure 8  

Locations of Sewer Meters, Sewer Catchment Areas, and Rain Gages Employed in 

Study 

 

Note. Created using Google Earth Pro and MMSD provided sewer catchment area data. 

 After the selection of sewers MS0453 and MS0456, representative streamflows were 

selected to be implemented in AMM. Two streams were selected: Lincoln Creek and the 

Milwaukee River. The main reason for this selection lies in the fact that the two streams are the 

closest streamflows to the metering locations of sewers MS0453 and MS0456. The two streams 

are diverse in their flow magnitudes, similar to sewers MS0453 and MS0456, with Lincoln 
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Creek experiencing an average flow of 21.1 cfs during 2018 while the Milwaukee River 

experienced an average flow of 864.9 during the same time period. Figure 9 depicts the metering 

locations and watersheds of the two streams. 

Figure 9  

Locations of Streamflow Meters and Watersheds Employed in Study 

 

Note. Created using Google Earth Pro, streamflow gage locations and watersheds obtained through the 

USGS StreamStats tool. Retrieved from https://streamstats.usgs.gov/ss/ 

 

https://streamstats.usgs.gov/ss/
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Methodology 

The time range of this study was from January 1, 2018 to October 11, 2022, a time period of 

nearly five years. The data sources utilized were required to have complete records during the 

entire time period of the study; thus, each data set listed hereinafter has complete records during 

the specified time period. 

Sanitary sewer flow data for sewers MS0453 and MS0456 were obtained from the 

Milwaukee Metropolitan Sewage District (MMSD). The sewer flow data received was reported 

in one-hour timesteps, the designated timestep for all AMM performed in this study. H2Ometrics 

was employed to isolate the WWF of the sewer flow data. H2Ometrics, a cloud-based water and 

sewer data program created by Robert Czachorski, contains a diurnal flow analysis tool which 

isolates the diurnal flow of a given sewer system (Czachorski, H2Ometrics, 2010). The diurnal 

flow produced using this analysis tool also accounts for long term variation due to GWI present 

during DWF. The diurnal flow (including GWI) was then subtracted from each sewer flow, 

leaving only the WWF due to RDI/I.  

Streamflow data were gathered from USGS gages for the specified time period, 

specifically stations 04087000 and 040869416 of the Milwaukee River and Lincoln Creek, 

respectively (USGS, n.d.). Unlike the MMSD-provided sewer flow data, the timesteps of the data 

acquired from USGS’s database varied over time. An interpolation function was utilized in Excel 

to approximate the flow values at the beginning of each hour, converting the data to a one-hour 

timestep. 

Rain gage data were obtained from MMSD for the selected rain gages, WS1214 and 

WS1224, in one-hour timesteps. They were initially received in a cumulative format, meaning 

that each rainfall event added on to the previous depth recorded during a single day. At the end 
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of the day, the rainfall depth was reset to zero inches. The data were converted to an incremental 

format using Excel, meaning the precipitation depth recorded during a single hour was limited to 

that timestep. This allowed for the data to be utilized in AMM, which requires an incremental 

precipitation signal. WS1244 was designated as the representative rainfall signal for predicting 

sewer MS0456’s flow using AMM due to the station being the closest in proximity to its 

catchment area as seen in Figure 8. Because sewer MS0453’s catchment area is positioned 

between WS1224 and WS1214, the Theissen Polygon method was used to determine how much 

of its catchment area should be associated with each rain gage. Of sewer MS0453’s 11,305 acre 

catchment area, 2,822 acres (25% of the total acreage) were found to be closer to WS1224 and 

8,483 acres (75% of the total acreage) were found to be closer to WS1214. Therefore, a 

composite rainfall signal was created for AMM applications regarding sewer MS0453, consisting 

of a weighted average between WS1224 and WS1214 (WS1224 and WS1214 were assigned 

weights of 25% and 75%, respectively). 

Temperature data were acquired through the National Oceanic and Atmospheric 

Administration’s (NOAA) National Centers for Environmental Information (NCEI) Climate 

Data Online portal for the specified time period (NCEI, n.d.). The closest station with complete 

records for the time period of this study was Milwaukee Mitchell International Airport. 

However, the smallest timestep available for a temperature data request using the portal was 24 

hours (average daily temperature). Therefore, the data were interpolated using a function in 

Excel to convert the data from a 24-hour timestep to a one-hour timestep. 

Snow depth data were acquired through the NOAA’s NCEI Climate Data Online portal 

for the specified time period (NCEI, n.d.). The closest station with complete records for the time 

period of this study was Milwaukee Mitchell International Airport. The smallest available 
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timestep for the snow depth data was 24 hours (average daily depth). However, the snow data did 

not require interpolation to a one-hour timestep as they are not an input in AMM. Snow depth 

was used to scrub the RDI/I responses to snowmelt events present in the sewer flow data, which 

is described in the following section. 

Scrubbing the Data 

 After the required data were gathered, they were then scrubbed to ensure continuity, to 

remove erroneous sewer meter readings, and to remove snowmelt event influenced RDI/I 

responses. 

 When analyzing the stream and sewer flow data sets acquired for this study, there were 

several instances where the metering devices reported a flow of zero cfs. These instances could 

have occurred from many different factors, but the most likely cause is that the metering device 

errored when it recorded that specific flow value. In order to ensure continuity, each instance of a 

flow meter reporting a flow of zero cfs was examined. If flow values were observed before and 

after the zero cfs reading, the zero cfs value was replaced with an average of the previous and 

following flow value. 

 There were several instances where rainfall occurred over the sewers’ catchment areas 

and there was no RDI/I response recorded by the sewer. Typically, the inflow component of 

RDI/I is nearly instantaneous, regardless of antecedent moisture conditions, as runoff enters 

sewers rapidly through connected roof drains and leaky manhole covers. A complete lack of 

RDI/I response in a sanitary sewer is unlikely due to these various inflow routes. Ultimately, 

there is no way to determine the exact cause of these occurrences and there is no ability to 

account for them using AMM due to AMM relying on RD, a constant capture fraction (W. 

Gonwa, personal communication, February 3, 2023). These erroneous sewer meter reading 



USING STREAM GAGES TO REPRESENT ANTECEDENT MOISTURE 42 

 

events were therefore excluded in error calculations for all applications of AMM in this study. 

An example of a sewer meter discrepancy is depicted in Figure 10. 

Figure 10  

Erroneous Sewer Meter Reading Event 

 

Note. Figure 10 shows the RDI/I flow experienced by sewer MS0453 as well as three rainfall events that 

occurred over its catchment area. The cumulative rainfall depths for each event are listed next to each 

event’s peak rainfall intensity. Though the first event has a cumulative depth more than twice the depth of 

the third event, the third event was the only event to exhibit an RDI/I response in sewer MS0453. 

 AMM cannot account for RDI/I responses due to snowmelt. Snowmelt is not 

implemented in AMM in its current form. Using representative snow depth data, the RDI/I 
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responses due to snowmelt events were identified and removed from error calculations in order 

to reduce error associated with scenarios AMM was not designed for. Figure 11 shows an RDI/I 

response caused by a snowmelt event. 

Figure 11  

RDI/I Response due to Snowmelt Event 

 

Note. Figure 11 shows the RDI/I response of sewer MS0453 due to a snowmelt event beginning around 

February 20, 2021. As the snow depth decreased from its peak of 20.9 inches, an increase in MS0453’s 

flow was observed.  
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Sewer Hydrology Models 

 After scrubbing the data, they were imported to Excel. Eight different models were 

created, four for each sanitary sewer. They are listed as follows: 

1. Sewer MS0453 

a. Temperature-based AMM model 

b. Milwaukee River two-level streamflow model 

c. Milwaukee River three-level streamflow model 

d. Lincoln Creek three-level streamflow model 

2. Sewer MS0456 

a. Temperature-based AMM model 

b. Milwaukee River two-level streamflow model 

c. Lincoln Creek two-level streamflow model 

d. Lincoln Creek three-level streamflow model 

Each of the models listed above utilized a fast and slow response, each with its own set of 

equations and calibratable parameters. The fast response represents the inflow component of the 

RDI/I response, while the slow response represents the infiltration component. The sum of the 

two responses represents the final predicted flow value. The variables calibrated for the 

temperature-based AMM models included RD, HHL, AMHL, PAT, Hot SHCF, and Cold SHCF. 

For the three-level streamflow models, the calibratable parameters were identical. For the two-

level streamflow models, the calibratable parameters included RD, RWmax, HHL, and PAT. 

Many values had to be calibrated differently depending on if they represented the fast or slow 

response. For example, HHL was always lower for the fast responses than the slow responses, as 

inflow reaches sewer systems much quicker than infiltration, causing it to have a shorter 
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hydrograph recession time. Each of these parameters were first calibrated manually for the initial 

portion of the study, then calibrated automatically using Bayesian Optimization later on. 

Error Criteria 

 To calibrate the parameters effectively, standard error criteria were developed for each 

model. The two types of error calculated were percent error and absolute value percent error. 

Percent error is the observed value subtracted from the modeled value, divided by the observed 

value. Absolute value percent error simply takes the absolute value of the percent error value.  

For each type of percent error, the peak flow error as well as event volume error were 

evaluated. Peak flow error refers to the difference between the maximum flow value seen during 

a storm event in the observed flow time series and the corresponding model flow time series. 

Event volume error refers to the difference in total volume of flow that a sewer experiences 

between the observed flow time series and corresponding model flow time series during a flow 

event. 

Percent error assists in understanding the bias of the model; a negative percent error 

indicates the model is under predicting flow while a positive percent error indicates the model is 

over predicting flow. It’s extremely helpful in the calibration of various capture fraction 

parameters such as RD and RWmax in the two-level streamflow models. The equations for 

percent error are as follows: 

𝑃𝑒𝑎𝑘 𝐹𝑙𝑜𝑤 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =
(𝑃𝐹𝑀−𝑃𝐹𝑂  )

𝑃𝐹𝑂
∗ 100   (16) 

and 

𝐸𝑣𝑒𝑛𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =  
(𝐸𝑉𝑀−𝐸𝑉𝑂  )

𝐸𝑉𝑂
∗ 100,  (17) 
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where 

 PFM = Peak flow of modeled storm event [L3/T], 

 PFO = Peak flow of observed storm event [L3/T], 

 EVM = Event volume of modeled storm event [L3], 

 EVO = Event volume of observed storm event [L3]. 

Absolute value percent error assists in understanding the magnitude of error a model is 

exhibiting. This makes it helpful in the calibration of nearly all calibratable parameters, as it’s a 

general indicator of a model’s proficiency. The equations for absolute value percent error are as 

follows: 

𝑃𝑒𝑎𝑘 𝐹𝑙𝑜𝑤 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑉𝑎𝑙𝑢𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = |
(𝑃𝐹𝑀−𝑃𝐹𝑂  )

𝑃𝐹𝑂
| ∗ 100       (18) 

and 

𝐸𝑣𝑒𝑛𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑉𝑎𝑙𝑢𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 = |
(𝐸𝑉𝑀−𝐸𝑉𝑂)

𝐸𝑉𝑂
| ∗ 100.       (19) 

Using H2Ometrics, the rainfall volumes for every storm present in the five years of 

historical sewer flow data were calculated. The top 15 storm events ranked by rainfall volume 

were then exported to Excel, where the peak flow error and event volume error were calculated 

for each storm using the two types of percent error. This created four error values for each of the 

top 15 storms, which were subsequently averaged to create two percent error and two absolute 

value percent error values for each model. Parameter calibration was mostly focused on the 

minimization of the average absolute percent error. This is because the average absolute value 

percent error is more representative of the magnitude of error as opposed to the bias of the 
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model. For instance, an average percent error of zero may seem excellent; however, the model 

could have an average absolute value percent error of 60%. If half of the top 15 storms have a 

percent error of 60% and the other half have a percent error of -60%, the model is overestimating 

as often as it is underestimating. While this is useful information, average absolute value percent 

error of the top 15 storms is more representative of the model’s general proficiency.  

Bayesian Optimization Using MATLAB 

 After a period of lengthy manual calibration, Bayesian optimization was employed to 

automate the calibration process. MATLAB code was written by ChatGPT after it was prompted 

with “Can you write sample MATLAB code that opens a connection to an Excel spreadsheet, 

sets input cell A7 equal to 15.3, tells Excel to recalculate, and finally retrieves the result of the 

calculation, which is a numeric value, from cell D23 and stores it in a MATLAB variable?” 

(OpenAI, 2023). Appendix B displays the raw output from ChatGPT when provided with this 

prompt. The code ChatGPT provided utilized the command Actxserver in MATLAB. Actxserver 

allows for the creation of an ongoing connection between MATLAB and Excel, allowing 

MATLAB to write values to specified cells of an Excel-based spreadsheet and read the value of a 

specified cell, whose value is reported back to MATLAB. This connection allowed the Bayesian 

optimization algorithm to edit specified calibratable parameters of an Excel based model and 

report the new error value back to MATLAB. The algorithm runs for as many trials as the user 

specifies; however, the default number of 30 trials was left unchanged.  

Bayesian Optimization is able to optimize four parameters at a time; larger sets of 

parameters (>4) strain the algorithm. Therefore, for each three-level model, first the cold SHCF 

and hot SHCF for both the fast and slow response were optimized simultaneously, followed by 

the RD for fast and slow. For each two-level model, the RD and RWmax for the both the fast and 
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slow responses were optimized simultaneously. The algorithm greatly helped in finding new 

optimal values for many calibratable parameters, especially the cold SHCF and hot SCHF 

parameters used in the temperature-based AMM and the three-level streamflow models. The 

Bayesian Optimization algorithm requires ranges to be specified for each of the parameters it 

attempts to optimize. These ranges were determined by taking the final values determined 

through manual calibration and assigning a range of ±50% of the value. 

The Bayesian Optimization algorithm goal was set to minimize the value of the average 

absolute value percent error of the top 15 storms in each model. However, there were two values 

to minimize, the average absolute value percent error of the peak flow and event volume error. 

The process was made more efficient by only providing one value for the algorithm to minimize. 

The top 15 storm event’s average absolute value percent error of peak flow and event volume 

were averaged, and the algorithm was set to minimize this value. This allowed the algorithm to 

optimize the parameters with an equal bias towards either minimizing peak flow error or event 

volume error. The combined error value will be referred to as absolute peak and volume percent 

error hereinafter.  

Results and Discussion 

The results of the models utilizing streamflow signals were promising and displayed comparable 

accuracy to their temperature-based AMM counterparts. Some streamflow-based models even 

showed higher accuracy than their temperature-based AMM counterparts. The parameters 

utilized in sewer MS0453 and MS0456’s models (four models per sewer) are listed in Table 1 

and 2, respectively. The largest RDI/I event of each sewer, as well as an example of 

compounding RDI/I events, are displayed for each model in Figures 12 through 27 (two figures 

per model). Figures 12 through 19 display sewer MS0453’s observed flow plotted against 
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modeled flow, while Figures 20 through 27 display the same for sewer MS0456. Analyzing the 

largest RDI/I event allows for the model’s ability to estimate peak flows and event volumes to be 

evaluated while the series of compounding RDI/I events give insight regarding each model’s 

ability to account for increasing antecedent moisture conditions. While sewer MS0456’s largest 

RDI/I event could also represent a series of compounding RDI/I events, MS0456’s models still 

have corresponding figures for the chosen series of RDI/I events. This decision allowed for 

comparison between the two sewers’ corresponding models over the same time period. 

 

Sewer MS0453 

Table 1  

Parameters Used in Models for Sewer MS0453 
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Figure 12  

Temperature-based AMM Model of Sewer MS0453 - Largest RDI/I Event 

 

Note. The model substantially overpredicted the event in peak flow as well as volume. 
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Figure 13  

Temperature-based AMM Model of Sewer MS0453 - Compounding RDI/I Events 

  

Note. The model slightly overpredicted the peak flow of Event #1. Interestingly, it underpredicts the 

succeeding events, Events #2 and #3. 
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Figure 14  

Two-level Model of Sewer MS0453 Utilizing the Milwaukee River Signal - Largest RDI/I 

Event 

 

Note. The model predicted the event accurately in peak flow and volume. 

 

 

  

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.000

10

20

30

40

50

60

5/17/2020 5/18/2020 5/19/2020 5/20/2020 5/21/2020 5/22/2020 5/23/2020

R
ai

n
fa

ll 
(i

n
/h

r)

Fl
o

w
 (

cf
s)

Date

MS0453 Observed Flow Model Flow Rainfall



USING STREAM GAGES TO REPRESENT ANTECEDENT MOISTURE 53 

 

Figure 15  

Two-level Model of Sewer MS0453 Utilizing the Milwaukee River Signal – Compounding 

RDI/I Events 

 

Note. The model accurately predicted Event #1 and #2. However, Event #3 was overpredicted by the 

model. 

 

  

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.000

10

20

30

40

50

60

8/26/2018 8/29/2018 9/1/2018 9/4/2018 9/7/2018 9/10/2018 9/13/2018

R
ai

n
fa

ll 
(i

n
/h

r)

Fl
o

w
 (

cf
s)

Date

MS0453 Observed Flow Model Flow Rainfall

Event #1 Event #2 Event #3



USING STREAM GAGES TO REPRESENT ANTECEDENT MOISTURE 54 

 

Figure 16  

Three-level Model of Sewer MS0453 Utilizing the Milwaukee River Signal - Largest 

RDI/I Event 

 

Note. The model predicted the event accurately in peak flow and volume. 
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Figure 17  

Three-level Model of Sewer MS0453 Utilizing the Milwaukee River Signal - 

Compounding RDI/I Events 

 

Note. The model slightly overpredicted peak flow for Event #1 while it accurately predicted Event #2’s 

peak flow. Event #3’s peak flow is overpredicted substantially. The volumes of Event #1 and #2 were 

predicted accurately while Event #3’s volume was overpredicted. 
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Figure 18  

Three-level Model of Sewer MS0453 Utilizing the Lincoln Creek Signal - Largest RDI/I 

Event 

 

Note. The model accurately predicted the peak flow while it slightly overpredicted the volume. 
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Figure 19  

Three-level Model of Sewer MS0453 Utilizing the Lincoln Creek Signal - Compounding 

RDI/I Events 

  

Note. The model slightly overpredicts Event #1 in peak flow and volume while it underpredicted Events #2 

and #3.   
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Sewer MS0456 

Table 2  

Parameters Used in Models for Sewer MS0456 
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Figure 20  

Temperature-based AMM Model of Sewer MS0456 - Largest RDI/I Event 

  

Note. The model underpredicted the peak flow of the event as well as the volume. 
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Figure 21  

Temperature-based AMM Model of Sewer MS0456 - Compounding RDI/I Events 

  

Note. The model substantially underpredicted the peak flow of Event #1 as well as the peak flows of 

Event #2. Peak flow of Event #3 was predicted accurately by the model. The volume of each event was 

slightly underpredicted by the model.  
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Figure 22  

Two-level Model of Sewer MS0456 Utilizing the Milwaukee River Signal - Largest RDI/I 

Event 

  

Note. The model accurately predicted the peak flow of the event as well as the volume. 
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Figure 23  

Two-level Model of Sewer MS0456 Utilizing the Milwaukee River Signal - Compounding 

RDI/I Events 

 

Note. The model substantially underpredicted the peak flow of Event #1 while it accurately predicted the 

volume. Event #2 and #3 were overpredicted by the model in both peak flow and volume.    
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Figure 24  

Two-level Model of Sewer MS0456 Utilizing the Lincoln Creek Signal - Largest RDI/I 

Event 

  

Note. The model slightly underestimated the peak flow and volume of the event.  
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Figure 25  

Two-level Model of Sewer MS0456 Utilizing the Lincoln Creek Signal - Compounding 

RDI/I Events 

  

Note. The model underpredicted Event #1’s peak flow while accurately predicting its volume. The peak 

flow and volume of Events #2 and #3 were accurately predicted.  
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Figure 26  

Three-level Model of Sewer MS0456 Utilizing the Lincoln Creek Signal - Largest RDI/I 

Event 

 

Note. The model substantially underestimated the peak flow and slightly underestimated the volume of 

the event. 
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Figure 27  

Three-level Model of Sewer MS0456 Utilizing the Lincoln Creek Signal - Compounding 

RDI/I Events 

  

Note. The model substantially underpredicted the peak flow and slightly underpredicted the volume of 

Event #1 and #2. Peak flow of Event #3 was predicted accurately by the model. 

 Sewer MS0453’s models have much lower capture fraction parameters than sewer 

MS0456’s models. This was expected due to their catchment areas differing in land use, with 
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urban. Because of the impervious areas within MS0456’s catchment, rainfall is less likely to be 
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0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.000

5

10

15

20

25

8/26/2018 8/29/2018 9/1/2018 9/4/2018 9/7/2018 9/10/2018 9/13/2018

R
ai

n
fa

ll 
(i

n
/h

r)

Fl
o

w
 (

cf
s)

Date

MS0456 Observed Flow Model Flow Rainfall

Event #1 Event #2 Event #3



USING STREAM GAGES TO REPRESENT ANTECEDENT MOISTURE 67 

 

more urban also appears to have resulted in its fast response AMHL parameter being lower than 

MS0453’s (two hours compared to five hours). The lower the AMHL, the quicker the system 

dries. Antecedent moisture has an increased effect on MS0453 as it retains antecedent moisture 

longer than MS0456. This assertation is further reinforced by MS0453 having larger HHLs than 

MS0456 for both responses. MS0453 appears to receive roughly equal amounts of RDI/I from 

inflow and infiltration sources while MS0456 receives RDI/I primarily from inflow sources, 

which increase and decrease quickly. 

 The PAT parameter for every model was nearly identical, with fast responses ranging 

from a PAT of five to six hours, and slow responses staying constant at 24 hours. The PAT 

influences the time between rainfall and an RDI/I response in the sewer. Because of the PAT’s 

uniformity across every model, it may be representative of a larger area than the two sewers’ 

catchments. 

 The Cold and Hot SHCF parameters for the models are largely dependent on the type of 

model utilized. Temperature-based models and models utilizing the Milwaukee River signal 

appear to have similar Cold and Hot SHCF ranges. The aforementioned model types have Cold 

and Hot SHCF values that vary by about one order of magnitude. However, models utilizing the 

Lincoln Creek signal appear to have much smaller Cold and Hot SHCF ranges, with their Cold 

and Hot SHCFs being nearly identical. As a result, Lincoln Creek’s signal influences its model’s 

flow by nearly the same amount regardless of its magnitude. This means that Lincoln Creek’s 

flow is less influenced by antecedent moisture conditions, producing similar responses to rainfall 

events regardless of antecedent moisture conditions. This was expected, as Lincoln Creek resides 

in a highly urban area with large amounts of impervious area. 
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 Conversely, the Milwaukee River’s signal is a strong indicator of antecedent moisture 

conditions. This was expected, as it is a regional river that has influenced areas alongside it to 

remain less developed. The Milwaukee River’s shores are home to many nature preserves, 

thereby reducing impervious areas within its watershed. The fact that the Cold and Hot SHCF 

parameters for both temperature-based models and models utilizing the Milwaukee River signal 

are extremely similar indicates that the Milwaukee River’s flow is influenced by antecedent 

moisture conditions.  

The Milwaukee River signal is able to represent antecedent moisture conditions to the 

same level of accuracy as a temperature signal, if not better. In Figure 12, the temperature-based 

model severely overpredicted the peak flow and volume of the RDI/I event, while in Figure 14, 

the event was modeled accurately. The cause of overprediction in Figure 12 lies in the 

temperature signal utilized by the model. The temperature ranged between 49 to 51 F° during the 

event, resulting in the temperature-based model calculating an RW of 0.041 and 0.031 at the 

event’s peak for its fast and slow response, respectively. In Figure 14, the three-level model 

utilizing the Milwaukee River signal’s scaled MASF3
t value ranged between 60 to 65 F° during 

the event’s time period. At the event’s peak, the three-level model calculated an RW of 0.004 

and 0.026 for its fast and slow response, respectively, much lower than the temperature-based 

model. Because the three-level Milwaukee River model produces a lower capture fraction, the 

RDI/I event was modeled with higher accuracy than the temperature-based model. In this event, 

the Milwaukee River signal was a better representation of antecedent moisture conditions than 

the temperature signal. Figure 28 compares the RW values for each model throughout the 

duration of the RDI/I event. 
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Figure 28  

Comparison of the Temperature-based AMM and Three-level Milwaukee River RW 

Values During Sewer MS0453's Largest RDI/I Event 

 

Note. The temperature-based AMM method substantially overpredicts the RW value during the RDI/I 

event for sewer MS0453. 

 The error values that guided the calibration of each parameter are listed in Table 3. 
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Table 3  

Error Values Employed in Parameter Calibration 

Sewer Model 

Peak Event 

Percent 

Error 

Event 

Volume 

Percent Error 

Absolute 

Peak and 

Volume 

Percent 

Error 

MS0453 

Temperature-based AMM 40% 45% 43% 

Milwaukee River two-level model 26% 32% 29% 

Milwaukee River three-level model 34% 36% 35% 

Lincoln Creek three-level model 35% 51% 43% 

      

MS0456 

Temperature-based AMM 25% 29% 27% 

Milwaukee River two-level model 25% 31% 28% 

Lincoln Creek two-level model 34% 39% 37% 

Lincoln Creek three-level model 30% 38% 34% 

  

Note. The peak event and event volume percent errors displayed in Table 3 represent the average of the 

15 absolute value percent error values acquired via the top 15 storms for each corresponding model. The 

absolute peak and volume percent errors displayed represent the average of each model’s peak event 

and event volume percent error. 

 Figure 29 compares the absolute peak and volume percent error between each sewer’s 

corresponding model in a horizontal bar graph. 
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Figure 29  

Absolute Peak and Volume Percent Error Comparison 

  

 Sewer MS0453’s two-level and three-level models utilizing the Milwaukee River signal 

outperformed its corresponding temperature-based AMM model. Sewer MS0456’s temperature-

based AMM model slightly outperformed its corresponding two-level model using the 

Milwaukee River signal, but only by 1%. Two-level and three-level models using the Lincoln 

Creek signal performed adequately but were outperformed by models using both temperature and 

Milwaukee River signals. This was expected as Lincoln Creek is not as strong of an indicator of 

antecedent moisture conditions due to its urban location, as stated previously in this section. 

 The results of this study have provided insight regarding the use of a streamflow signal to 

represent the antecedent moisture conditions of a sewer’s catchment area. The streamflow 
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signals in two-level and three-level models produced comparable or better results than the 

standard temperature-based AMM models.  

Sewer MS0453 and MS0456’s two-level models using the Milwaukee River signal 

achieved the lowest error amongst all other streamflow-based models. There are two potential 

reasons why the two-level models outperformed their three-level counterparts. First, the two-

level models did not scale the streamflow signal to a corresponding temperature value. Instead, 

the third level of AMM was excluded from the model’s calculations and RWmax was multiplied 

by the scaled MASF2
t value directly. The scaled MASF2

t value directly influences the RWmax 

parameter in two-level models as opposed to the less direct influence of the RWt-1 parameter via 

the SHCF in three-level models. Giving the streamflow signal a more direct path of influence in 

two-level models could have given two-level models an edge over three-level models. Second, 

two-level models have fewer parameters associated with their calibration due to their exclusion 

of the third level of AMM. Two-level models have only four calibratable parameters as opposed 

to the three-level models, which have six calibratable parameters. Fewer calibratable parameters 

simplifies the calibration process and could have allowed the Bayesian Optimization algorithm to 

determine more accurate parameters for two-level models. 

A key factor that may have influenced each model’s accuracy is the variability of rainfall 

distribution. During the summer, rainfall depths can change drastically over short distances (W. 

Gonwa, personal communication, May 10, 2023). Variability of rainfall distribution between a 

sewer’s catchment area and its representative rain gage would result in the sewer’s models 

inaccurately predicting the RDI/I response. For example, the compounding RDI/I events 

depicted for each of sewer MS0456’s models underpredict Event #1’s peak flow. MS0456’s 

representative rain gage, WS1224, likely experienced variability in rainfall and recorded a lower 
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depth than what MS0456’s catchment area experienced. The compounding RDI/I events 

occurred during late summer, increasing the possibility of rainfall variability. 

Conclusion 

 Streamflow gages were able to accurately represent the antecedent moisture conditions of 

a nearby sewer’s catchment area. The implementation of a streamflow signal in antecedent 

moisture modeling produced comparable or better results than the standard temperature-based 

AMM approach. The use of streamflow signals of large regional rivers are recommended, as 

models using the Milwaukee River’s signal achieved higher accuracy than models using Lincoln 

Creek’s signal. Accurately predicting wet weather flow in sanitary sewer systems is imperative 

in the design of strategies that limit the environmental and public health impacts of SSO’s and 

increased WWTP loads. The results of this study support an opinion that further research into the 

use of streamflow signals to represent antecedent moisture conditions would be beneficial for the 

field of sanitary sewer system modeling. 

Recommendations 

 The data collected for this study were specific to the Milwaukee area. In order to verify 

the results presented, further research should be conducted analyzing data from different regions 

with different climates than that of Milwaukee, WI. The ability of a streamflow signal to 

represent the antecedent moisture conditions of a sanitary sewer system may change depending 

on the location’s climate. Additionally, future research should include a larger sample size of 

sewer systems in order to confirm the results of this study. 

Attempting to model five years of sanitary sewer flow may have increased the difficulty 

of achieving accurate results. It’s possible that certain parameters used in the various sewer 
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models may have changed slightly over the duration of the data. A shorter duration of time may 

provide a more accurate representation of the sanitary sewer system’s parameters, thereby 

increasing the accuracy of the model’s RDI/I flow prediction. 

Future studies should address the variability of rain. The installation of rain gages in the 

center of sewers’ catchments areas would provide a more accurate estimation of the total RDI/I 

volume the sewer experiences. 
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Appendix A: Model Error Values 

Table A1 

Error Values for Two-level Model Using Milwaukee River - Sewer MS0453 

 

Note. One of sewer MS0453’s largest 15 events was omitted due to an erroneous sewer meter reading. 

Therefore, only the 14 largest events were tabulated for sewer MS0453 

Table A2 

Error Values for Three-level Model using Milwaukee River - Sewer MS0453 

 

Event Rank Start End Peak Event (cfs) Event Volume (cf) Peak Event (cfs) Event Volume (cf) Peak Event Event Volume

1 5/17/2020 4:00 5/23/2020 8:00 -1.05 7.35E+07 3% 9% -3% 9%

2 9/29/2019 3:00 10/10/2019 8:00 -2.40 -6.13E+08 19% 30% -19% -30%

3 8/6/2021 13:00 8/19/2021 4:00 6.43 7.80E+08 18% 48% 18% 48%

4 8/26/2018 18:00 9/1/2018 9:00 7.23 1.26E+08 22% 16% 22% 16%

5 6/18/2018 6:00 6/24/2018 8:00 -14.41 -1.47E+08 49% -27% -49% 27%

6 9/11/2022 5:00 9/17/2022 8:00 1.39 1.88E+08 5% 36% 5% 36%

7 4/28/2020 5:00 5/6/2020 8:00 -13.50 -2.18E+08 54% 33% -54% -33%

8 3/22/2022 17:00 3/28/2022 18:00 -10.78 -3.60E+08 67% 70% -67% -70%

9 9/29/2018 2:00 10/5/2018 7:00 -7.97 -9.51E+07 40% 21% -40% -21%

10 5/3/2021 11:00 5/13/2021 5:00 -12.24 -3.97E+08 65% 62% -65% -62%

11 7/9/2020 16:00 7/14/2020 3:00 1.81 1.37E+08 9% 68% 9% 68%

12 12/11/2020 3:00 12/19/2020 9:00 -9.02 -2.96E+08 66% 68% -66% -68%

13 4/10/2021 7:00 4/19/2021 6:00 -7.39 -2.71E+08 53% 56% -53% -56%

14 9/1/2018 17:00 9/5/2018 7:00 -1.66 3.96E+07 8% 13% -8% 13%

Percent ErrorError Absolute Percent Error
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Table A3  

Error Values for Temperature-based AMM - Sewer MS0453 

 

Table A4 

Error Values for Three-level Model Using Lincoln Creek - Sewer MS0453 

 

  

Event Rank Start End Peak Event (cfs) Event Volume (cf) Peak Event (cfs) Event Volume (cf) Peak Event Event Volume

1 5/17/2020 4:00 5/23/2020 8:00 37.48 8.94E+08 102% 107% 102% 107%

2 9/29/2019 3:00 10/10/2019 8:00 -2.67 -7.20E+08 21% 35% -21% -35%

3 8/6/2021 13:00 8/19/2021 4:00 15.66 1.21E+09 44% 74% 44% 74%

4 8/26/2018 18:00 9/1/2018 9:00 5.58 6.83E+07 17% 8% 17% 8%

5 6/18/2018 6:00 6/24/2018 8:00 -14.10 -1.44E+08 48% 26% -48% -26%

6 9/11/2022 5:00 9/17/2022 8:00 8.63 3.64E+08 31% 71% 31% 71%

7 4/28/2020 5:00 5/6/2020 8:00 -3.38 1.96E+08 13% 30% -13% 30%

8 3/22/2022 17:00 3/28/2022 18:00 -7.78 -2.58E+08 48% 50% -48% -50%

9 9/29/2018 2:00 10/5/2018 7:00 -2.69 7.41E+07 14% 16% -14% 16%

10 5/3/2021 11:00 5/13/2021 5:00 -10.15 -3.24E+08 54% 50% -54% -50%

11 7/9/2020 16:00 7/14/2020 3:00 -3.35 4.17E+07 16% 21% -16% 21%

12 12/11/2020 3:00 12/19/2020 9:00 -5.64 -1.81E+08 41% 42% -41% -42%

13 4/10/2021 7:00 4/19/2021 6:00 -6.26 -2.37E+08 45% 49% -45% -49%

14 9/1/2018 17:00 9/5/2018 7:00 -12.94 -1.39E+08 59% 46% -59% -46%

Percent ErrorError Absolute Percent Error
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Table A5 

Error Values for Temperature-based AMM - Sewer MS0456 

 

Table A6 

Error Values for Two-level Model Using Milwaukee River - Sewer MS0456 

 

  

Event Rank Start End Peak Event (cfs) Event Volume (cf) Peak Event Event Volume Peak Event Event Volume

1 9/27/2019 11:00 10/10/2019 2:00 -0.98 -6.24E+07 22% 20% -22% -20%

2 8/26/2018 10:00 9/1/2018 9:00 -6.84 1.32E+07 43% 9% -43% 9%

3 5/17/2020 3:00 5/24/2020 12:00 -0.72 9.18E+06 7% 5% -7% 5%

4 8/6/2021 1:00 8/13/2021 18:00 2.27 6.00E+07 26% 40% 26% 40%

5 9/11/2022 1:00 9/16/2022 10:00 2.95 4.95E+07 64% 103% 64% 103%

6 4/27/2020 9:00 5/6/2020 2:00 -1.08 -7.28E+05 28% 3% -28% -3%

7 6/18/2018 2:00 6/24/2018 7:00 1.69 1.43E+07 37% 22% 37% 22%

8 3/22/2022 9:00 3/28/2022 18:00 -0.53 -3.36E+07 24% 53% -24% -53%

9 9/29/2018 15:00 10/3/2018 23:00 -1.25 -3.27E+06 34% 8% -34% -8%

10 9/9/2019 3:00 9/16/2019 12:00 -0.94 1.80E+07 18% 28% -18% 28%

11 12/9/2020 20:00 12/16/2020 6:00 -1.03 -2.32E+07 44% 59% -44% -59%

12 7/17/2019 21:00 7/24/2019 5:00 -0.33 1.94E+07 9% 45% -9% 45%

13 7/5/2020 11:00 7/14/2020 8:00 1.68 3.19E+07 44% 43% 44% 43%

14 12/1/2018 7:00 12/6/2018 6:00 -0.31 -1.14E+07 14% 36% -14% -36%

15 8/20/2018 20:00 8/24/2018 3:00 2.04 1.60E+07 37% 78% 37% 78%

Error Absolute Percent Error Percent Error
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Table A7 

Error Values for Three-level Model Using Lincoln Creek - Sewer MS0456 

 

Table A8 

Error Values for Two-level Model Using Lincoln Creek - Sewer MS0456 

 

  

Event Rank Start End Peak Event (cfs) Event Volume (cf) Peak Event Event Volume Peak Event Event Volume

1 9/27/2019 11:00 10/10/2019 2:00 -1.80 -1.07E+08 41% 34% -41% -34%

2 8/26/2018 10:00 9/1/2018 9:00 -8.52 -3.13E+07 54% 21% -54% -21%

3 5/17/2020 3:00 5/24/2020 12:00 -3.46 -6.60E+07 36% 33% -36% -33%

4 8/6/2021 1:00 8/13/2021 18:00 0.16 3.32E+07 2% 22% 2% 22%

5 9/11/2022 1:00 9/16/2022 10:00 1.96 4.23E+07 43% 88% 43% 88%

6 4/27/2020 9:00 5/6/2020 2:00 -1.39 -8.52E+05 36% 3% -36% -3%

7 6/18/2018 2:00 6/24/2018 7:00 1.01 1.16E+07 22% 18% 22% 18%

8 3/22/2022 9:00 3/28/2022 18:00 -0.63 -3.48E+07 28% 55% -28% -55%

9 9/29/2018 15:00 10/3/2018 23:00 -1.22 -1.54E+06 34% 4% -34% -4%

10 9/9/2019 3:00 9/16/2019 12:00 -1.53 1.51E+07 29% 23% -29% 23%

11 12/9/2020 20:00 12/16/2020 6:00 -1.08 -2.24E+07 46% 57% -46% -57%

12 7/17/2019 21:00 7/24/2019 5:00 -0.07 2.49E+07 2% 58% -2% 58%

13 7/5/2020 11:00 7/14/2020 8:00 1.15 2.83E+07 30% 39% 30% 39%

14 12/1/2018 7:00 12/6/2018 6:00 -0.45 -1.04E+07 21% 32% -21% -32%

15 8/20/2018 20:00 8/24/2018 3:00 1.54 1.60E+07 28% 78% 28% 78%

Error Absolute Percent Error Percent Error

Event Rank Start End Peak Event (cfs) Event Volume (cf) Peak Event Event Volume Peak Event Event Volume

1 9/27/2019 11:00 10/10/2019 2:00 -1.38 -106820948.9 31% 34% -31% -34%

2 8/26/2018 10:00 9/1/2018 9:00 -6.09 4560682.592 39% 3% -39% 3%

3 5/17/2020 3:00 5/24/2020 12:00 -1.26 -23317294.98 13% 12% -13% -12%

4 8/6/2021 1:00 8/13/2021 18:00 1.72 52111852.44 20% 35% 20% 35%

5 9/11/2022 1:00 9/16/2022 10:00 3.31 47094331.76 72% 97% 72% 97%

6 4/27/2020 9:00 5/6/2020 2:00 -1.45 -868803.6829 38% 3% -38% -3%

7 6/18/2018 2:00 6/24/2018 7:00 2.15 26039894.87 48% 39% 48% 39%

8 3/22/2022 9:00 3/28/2022 18:00 -0.85 -39650213.74 38% 62% -38% -62%

9 9/29/2018 15:00 10/3/2018 23:00 -1.05 -3440235.626 29% 8% -29% -8%

10 9/9/2019 3:00 9/16/2019 12:00 -0.87 13963552.55 17% 22% -17% 22%

11 12/9/2020 20:00 12/16/2020 6:00 -1.23 -25185950.2 53% 64% -53% -64%

12 7/17/2019 21:00 7/24/2019 5:00 0.10 20525514.18 3% 47% 3% 47%

13 7/5/2020 11:00 7/14/2020 8:00 1.47 24471476.05 39% 33% 39% 33%

14 12/1/2018 7:00 12/6/2018 6:00 -0.75 -14791230.1 35% 46% -35% -46%

15 8/20/2018 20:00 8/24/2018 3:00 1.84 14789976.18 33% 72% 33% 72%

Error Absolute Percent Error Percent Error
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Appendix B: ChatGPT Raw Output 

% Create an Excel application object 

ExcelApp = actxserver('Excel.Application'); 

  

% Set Excel to be visible (optional) 

ExcelApp.Visible = 1; 

  

% Open the Excel file (replace 'your_file.xlsx' with the actual file path) 

Workbook = ExcelApp.Workbooks.Open('C:\your_file_path\your_file.xlsx'); 

  

% Get a reference to the first sheet in the workbook 

Sheet1 = Workbook.Sheets.Item(1); 

  

% Set the value of cell A7 

Sheet1.Range('A7').Value = 15.3; 

  

% Recalculate 

ExcelApp.Calculate; 

  

% Retrieve the value from cell D23 and store it in a MATLAB variable 

result = Sheet1.Range('D23').Value; 

  

% Close the workbook and save changes 
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Workbook.Close(true); 

  

% Quit Excel 

ExcelApp.Quit; 

  

% Release the COM objects 

Workbook.release; 

ExcelApp.release; 

  

% Display the result 

disp(['The value in cell D23 is: ', num2str(result)]); 

  

Replace 'C:\your_file_path\your_file.xlsx' with the correct path to your Excel file. This code 

assumes that the Excel file contains at least one worksheet and that you are interested in 

interacting with the first sheet. 
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