
CODING AND BIT-ERROR-RATE-TEST BLOCKS FOR A SERIAL

DIGITAL MULTI-GIGABIT COMMUNICATION SYSTEM

by

David T. Carney

A Report Submitted to the Faculty of the

Milwaukee School of Engineering

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Milwaukee, WI

May 11, 2005

 2

Abstract

The project involves serial digital multi-gigabit communication systems that are

emerging for use in chip-to-chip applications in digital systems. These systems

communicate data using very high speed point-to-point serial links in a switch fabric

architecture between processors and peripherals in digital systems. The major purpose of

this project is to develop two reusable building blocks for use on projects containing

serial digital multi-gigabit communication systems. The reusable building blocks are an

error correcting code (ECC) encoder and decoder appropriate for these systems and a bit-

error-rate tester (BERT). Both of these building blocks are designed using digital logic in

Very High Speed Integrated Circuit Hardware Description Language (VHDL) to be

implemented in a field programmable gate array (FPGA) that contains multi-gigabit

serial transceivers.

The project includes a detailed investigation of serial digital multi-gigabit

communication systems that was required to determine an appropriate ECC design.

Elements of the investigation include the communication channel and bandwidth, random

and deterministic noise sources and effects, characteristics of the transmitted data, and a

comparison of different types of ECCs. The ECC designed in this project consisted of a

maximum run length code stage inside of a 2-error correcting primitive BCH code. The

overall code word size is 63 bits, the data word size is 48 bits, and a single padding bit is

added to make the code word size 64 bits. A detailed description of the logic design for

this code is provided.

The project also includes some investigation into bit-error-rate test

methodologies. Some information on the statistical nature of bit-error-rate measurements

is developed as well as discussion of different types of data patterns. Three bit-error-rate

test patterns are implemented in the BERT block and they are a programmable data word

pattern, a 2
11

 – 1 pseudorandom bit sequence (PRBS) pattern, and a 2
31

 – 1 PRBS pattern.

A detailed description of the logic design for the BERT block is provided. The design of

the BERT block is efficient enough to support data rates up to the maximum of the Altera

Stratix GX FPGA.

In the project, the ECC block is implemented in an Altera Stratix GX FPGA. The

BERT block is used as the data source and also to measure the bit error rate. The bit

error rate performance is compared for the coded data and uncoded data running at

approximately the information data rate of the coded data. Two physical channels are

used in the comparison, one 10-inch backplane channel and one 40-inch backplane

channel. The ECC block design of this project is not effective in the 40-inch backplane

channel and results in a higher bit error rate than uncoded data. The ECC block is

effective in the 10-inch backplane channel, but the bit error rate without coding is already

much lower than the target rate. The test results indicate that the ECC block may be

more effective when used with equalization. They also indicate that a code with similar

error correcting capabilities but a higher code rate may also improve performance, but

detailed investigation of this is left as future work.

 3

Table of Contents

1 Introduction... 11

1.1 General Background ... 11

1.2 Serial Digital Multi-Gigabit Communication System Standards.................... 15

1.3 Altera Stratix GX Development Board... 17

2 Literature Review.. 19

3 Error Correction Code Functional Block.. 24

3.1 Communication Channel .. 24

3.1.1 Channel Bandwidth... 25

3.1.2 Channel Capacity .. 33

3.2 Noise Sources.. 34

3.2.1 Random Noise... 34

3.2.2 Deterministic Noise .. 35

3.2.3 Noise Effects... 37

3.3 Transmitted Data... 39

3.4 Probability of Bit Error ... 43

3.4.1 Bit Error Rate versus Gaussian Noise... 43

3.4.2 Bit Error Rate versus Gaussian Noise with Deterministic Noise 45

3.4.3 Transmission Capacity of the Channel ... 46

3.4.4 Bit Error Rate versus Jitter.. 48

3.5 Error Correction Code Selection... 54

3.5.1 Summary of ECC Requirements... 54

3.5.2 Maximum Run Length Limit .. 56

 4

3.5.3 Discussion of Code Choice... 57

3.6 Error Correction Code Design .. 64

3.6.1 MRL + BCH (63,51) Encoder Design .. 65

3.6.2 General BCH Decoding Discussion.. 71

3.6.3 MRL + BCH (63,51) Decoder Design.. 73

4 Bit-Error-Rate-Test Functional Block .. 83

4.1 Bit-Error-Rate-Test Measurement Background.. 84

4.2 Bit-Error-Rate-Test Data Patterns... 90

4.3 Bit-Error-Rate-Test Block Design .. 91

4.3.1 Bit-Error-Rate-Test Pattern Generator.. 92

4.3.2 Bit-Error-Rate-Test Receiver.. 94

5 Implementation and Integration Results ... 101

5.1 Implementation Design... 101

5.2 Stratix GX Development Board Indicators and Settings 108

5.3 Test Results... 111

5.3.1 BER for 10 in. Backplane Channel Uncoded Data................................. 113

5.3.2 BER for 10 in. Backplane Channel Coded Data..................................... 114

5.3.3 BER for 40 in. Backplane Channel Uncoded Data................................. 115

5.3.4 BER for 40 in. Backplane Channel Coded Data..................................... 117

5.3.5 Equalization with Coded and Uncoded Data in the 40 in. Backplane 119

5.3.6 BER Bathtub Curves and Coding Gain for 10 in. Backplane Channel .. 120

6 Conclusions and Future Work .. 125

7 References... 129

 5

8 Bibliography ... 133

9 Appendix A – ECC Block Datasheet.. 134

10 Appendix B – BERT Block Datasheet.. 148

 6

List of Figures

Figure 1 - Typical digital system block diagram for systems using serial digital multi-

gigabit communications. ... 12

Figure 2 - Worst-case transmission channel. .. 14

Figure 3 - Differential transmission channel model block diagram. 26

Figure 4 - IO and controller card differential trace, 2-dimensional cross section. 27

Figure 5 - Backplane card differential trace, 2-dimensional cross section. 28

Figure 6 - Channel frequency response SPICE simulation circuit. 29

Figure 7 - Backplane channel power gain response excluding AC coupling capacitors. . 29

Figure 8 - AC coupling capacitor low frequency cut off simulation circuit. 31

Figure 9 – Frequency response with AC coupling capacitors. ... 31

Figure 10 - Deterministic jitter from AC coupling. .. 42

Figure 11 – Probability of bit error for Gaussian noise channel....................................... 44

Figure 12 - 40-inch backplane channel capacity... 47

Figure 13 - Gaussian random jitter probability density function at each bit edge............ 50

Figure 14 - XAUI PDF of bit transition times. ... 52

Figure 15 - Probability of bit error plot for XAUI.. 53

Figure 16 - MRL and ECC system design block diagram. ... 57

Figure 17 - Code bit order diagram... 65

Figure 18 - Encoder block diagram. ... 66

Figure 19 - (63,51) BCH code encoder circuit. .. 70

Figure 20 - Decoder block diagram. ... 74

Figure 21 - Syndrome computation circuit. .. 77

 7

Figure 22 - GF(2
6
) multiplier circuit... 79

Figure 23 - Error-location polynomial computation circuit.. 80

Figure 24 - Error-search circuit... 82

Figure 25 - BERT pattern generator block diagram. .. 92

Figure 26 - 2
11

 - 1 PRBS LFSR block diagram, for P(X) = X
11

 + X
9
 + 1.......................... 93

Figure 27 - 2
31

 - 1 PRBS LFSR block diagram, for P(X) = X
31

 + X
28

 + 1. 93

Figure 28 - BERT receiver block diagram.. 95

Figure 29 - BERT receiver process flow diagram. ... 96

Figure 30 - Synchronization and BERT control block state machine. 99

Figure 31 - BERT and ECC integration design top level block diagram. 102

Figure 32 - ECC and BERT transmit block diagram.. 104

Figure 33 - BERT and ECC receive block diagram. .. 105

Figure 34 - ECC block synchronization state machine... 107

Figure 35 - Uncoded data eye diagram, 2.5 Gbps, 2
11

 - 1 PRBS pattern, 10 in. backplane

(oscilloscope screen capture). ... 113

Figure 36 - Coded data eye diagram, 3.125 Gbps, 2
11

 - 1 PRBS pattern, 10 in. backplane

(oscilloscope screen capture). ... 114

Figure 37 - Uncoded data eye diagram, 2.5 Gbps, 2
11

 - 1 PRBS pattern, 40 in. backplane

(oscilloscope screen capture). ... 116

Figure 38 - Coded data eye diagram, 3.125 Gbps, 2
11

 - 1 PRBS pattern, 40 in. backplane

(oscilloscope screen capture). ... 118

Figure 39 - Coding gain bathtub curves for system with XAUI jitter parameters.......... 122

Figure 40 - Coding gain for 10 in. backplane channel.. 124

 8

List of Tables

Table 1 - Comparison of serial digital multi-gigabit communication standards. 16

Table 2 - Comparison of Altera and Xilinx multi-gigabit serial transceivers................... 18

Table 3 - Channel bandwidth results. ... 32

Table 4 - Minimum Eb / N0 for transmission channel at 3.125 Gbps data rate. 33

Table 5 - Channel capacity. .. 48

Table 6 - ECC design criteria.. 55

Table 7 - Measurement accuracy versus number of bit errors measured, and

corresponding test times, for 3.125 Gbps data rate and measured BER of 10
-12

. 87

Table 8 – Test time versus specified bit error rate threshold and confidence, at 3.125

Gbps. ... 88

Table 9 - Data patterns selected for BERT block design.. 91

Table 10 - Stratix GX development board dip switch settings for integration design.... 109

Table 11 - Stratix GX development board status indicators for integration design........ 110

 9

Nomenclature

Term or Acronyn Meaning

AC Alternating Current

ASIC Application Specific Integrated Circuit

BCH Bose-Chaudhuri-Hocquengham

BER Bit Error Rate

BERT Bit Error Rate Test

BGA Ball Grid Array

BPSK Binary Phase Shift Keying

CDF Cumulative Distribution Function

CML Current Mode Logic

CPU Central Processing Unit

CRC Cyclic Redundancy Check

dB Decibel

DC Direct Current

DDR Double Data Rate

dip dual in-line package

ECC Error Correction Code

ECL Emitter Coupled Logic

FEC Forward Error Correction

FIFO First In First Out

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GaAs Galium Arsenide

Gbps Gigabits Per Second (10
9
 bits per second)

GHz Giga-Hertz (10
9
 Hertz)

Hz Hertz

IC Integrated Circuit

IO Input/Output

kHz kilo-Hertz (10
3
 Hertz)

LED Light Emitting Diode

LFSR Linear Feedback Shift Register

Mbps Megabits Per Second (10
6
 bits per second)

MESFET Metal-Semiconductor-Field-Effect-Transistor

MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor

MRL Maximum Run Length

nF nanofarad (10
-9

 farad)

NRZ-L Nonreturn-to-Zero Level

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCM Pulse-Code Modulation

PDF Probability Density Function

PRBS Pseudo Random Bit Sequence

 10

QPSK Quadrature Phase Shift Keying

RLGC Resistance, Inductance, Conductance, Capacitance elements of a

distributed model of a transmission line

rms Root Mean Square

SDRAM Synchronous Dynamic Random Access Memory

SERDES Serializer / Deserializer

Si Silicon

SDRAM Synchronous Dynamic Random Access Memory

SMA Subminiature Version A – type of connector for coaxial cables with

a threaded interface.

SONET Synchronous Optical Networking

UI Unit Interval – refers to the bit period of a serial transmission

VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description

Language

 11

1 Introduction

The project is to design and implement error correction coding (ECC) and bit

error rate test (BERT) functional blocks for a serial digital multi-gigabit communication

system
1
. In recent years there has been a proliferation of fast serial protocols for

interconnection in digital systems between chips within boards, across backplanes, and

through cables. Some examples are PCI Express, Serial RapidIO, XAUI, and Infiniband

[1]. There are two purposes for this project. The first is to increase at Plexus the

knowledge and understanding of digital data communications as applied to these types of

serial digital interconnections that are becoming common. The second is to develop ECC

and BERT functional blocks that can be reused in future designs to shorten the product

development cycle.

1.1 General Background

The emerging serial digital multi-gigabit communication systems are the result of

the evolution of the digital bus architecture from asynchronous to synchronous to source-

synchronous and then to serial. A description of each of these types of digital bus

architectures is given in section 2. These systems have some common characteristics

with each other especially in the area of digital signaling technology. The signaling is

typically baseband pulse-code modulation (PCM) in a nonreturn-to-zero level (NRZ-L)

format. A typical system block diagram for chip-to-chip communications using serial

1
 High-speed digital communication links or systems operating at rates above one gigabit per

second are referred to herein as multi-gigabit communication systems.

 12

digital multi-gigabit communications is shown in Figure 1. In the system, data and

commands can be passed between devices through the switch fabric. The data can be

passed directly between Input/Output (IO) devices through the switch fabric without

being delayed by transfers to and from the CPU, and without limiting the CPU

throughput to other IO devices.

Digital IC

Digital IC

Switch Fabric IC

CPU

IO Card

IO Card

Backplane Controller Card

C
o

n
n
e

c
to

r
C

o
n
n

e
c
to

r

C
o
n

n
e

c
to

r

Figure 1 - Typical digital system block diagram for systems using serial digital multi-gigabit

communications.

The connections are made by serial links and may actually consist of multiple

serial links, operating in parallel, in each direction. The XAUI standard for example uses

four independent serial links, each operating at 3.125 Gbps, for a total rate of 12.5 Gbps.

The XAUI standard uses 8B/10B coding to assure DC balance so the effective data rate is

10 Gbps [2].

The digital signaling used is similar in format to the older synchronous bus

architectures such as Peripheral Component Interconnect (PCI), but in order to operate at

 13

the high data rates differential signaling is now commonly used in serial digital multi-

gigabit communication systems [2] [3] [4] [5]. The type of buffer commonly used is

Current Mode Logic (CML) and this is the type of signaling that is supported by both

Xilinx and Altera devices [6] [7].

The transmission channel consists of several elements that connect the differential

transmitters on one IC to the differential receivers on another IC. These elements include

the connection from the die of the IC to the board referred to as the package connection,

the connections called vias in the printed circuit board, used to transition between routing

layers, the traces in the printed circuit board, and the connectors and cables used to

connect printed circuit boards together. For the system shown in Figure 1 the worst-case

transmission channel is from the IC on an IO card to the switch fabric IC on the

controller card. This will be the transmission channel that will be discussed throughout

this project report. A block diagram of this transmission channel is shown in Figure 2.

The transmission channel for each serial link consists of two connections, one for each

end of the differential pair (positive and negative). In addition, not shown in the diagram

is that the signals on each end of the differential pair propagate between that pair and a

reference return plane. Throughout the channel, it is assumed that the traces are far

enough apart that there is little coupling between them and they can be referred to as a

loosely coupled differential pair.

The primary advantages of differential signaling in a printed circuit board (PCB)

transmission channel are immunity to power and ground noise, reduction of and

immunity to simultaneous switching noise, and lower emissions. As long as the

differential outputs are well balanced and the loads seen by each signal in the pair are

 14

symmetrical, the degree of coupling does not have much effect on these advantages. A

secondary benefit of differential signaling in printed circuit board routing is that of

immunity to crosstalk from nearby neighbors since the crosstalk will affect both traces in

the pair. Tighter coupled differential pairs would have slightly more immunity to

crosstalk and take up less space because the traces are closer together. The disadvantages

of tighter coupling are smaller trace widths required to achieve the same characteristic

impedance that make skin effect loss worse, and impedance discontinuities caused when

the traces break apart to go around obstacles such as vias. The disadvantages usually

outweigh the advantages especially at multi-gigabit data rates where high frequency loss

and reflections off impedance discontinuities are concerns. There are trade offs in

choosing loosely coupled or tightly coupled differential pairs and those must be weighed

carefully in system design [8].

IC Die

via

IC Package
Connections

PCB Trace

PCB Trace
via

via
PCB Trace

PCB Trace
via

Backplane
Connector

via

via

P
C

B
 T

ra
c
e

P
C

B
 T

ra
c
e

IC Die

via

IC Package
Connections

PCB Trace

PCB Trace
via

via
PCB Trace

PCB Trace
via

Backplane
Connector

via

via

Figure 2 - Worst-case transmission channel.

 15

Another common feature in serial digital multi-gigabit communication systems is

the use of AC coupling between transmitter and receiver. The use of AC coupling

requires that the data be coded in a way to limit the frequency content of the signal to

what can be passed through the AC-coupled transmission path. There are three main

advantages to using AC coupling. The first is that AC coupling allows for different DC

bias voltage levels at the transmitter and receiver. This provides a lot of flexibility in

system design and allows many different parts to operate together. Next, AC coupling

also allows the outputs to be shorted to ground either accidentally or intentionally without

causing damage to the drivers at an interface with a removable connection. Finally, AC

coupling allows for the interconnection of two devices without requiring any common

return connection between them and this can be useful when connecting different systems

together. This can be very important for networking applications.

The use of AC coupling, as well as the associated requirement for a maximum run

length of logic 0s or 1s to ensure proper clock recovery, leads to the use of run-length-

limited and DC-free codes in serial digital multi-gigabit communication systems. One

such code that is commonly used is referred to as 8B/10B coding and was developed by

Widmer and Franaszek [9]. This code maps 8-bit data words into 10-bit transmission

words. It guarantees a maximum run length of 5 bits at any given time and a maximum

running disparity between 0s and 1s of 6 at any given time [9].

1.2 Serial Digital Multi-Gigabit Communication System Standards

Some metrics are presented in Table 1 to compare some of the serial digital multi-

gigabit communication standards. The information in Table 1 was obtained from the

applicable standards for each protocol [2] [3] [4] [5] [10] [11].

 16

Table 1 - Comparison of serial digital multi-gigabit communication standards.

 XAUI Infiniband Serial Rapid

IO (3.125

Gbps, Long

Run)

Fibre

Channel

PCI Express

Transmission rate per

channel

3.125 Gbps 2.5 Gbps 3.125 Gbps 2.125 Gbps 2.5 Gbps

Effective transmission

rate per channel after

coding

2.5 Gbps 2.0 Gbps 2.5 Gbps 1.7 Gbps 2.0 Gbps

Total channels 4 1, 4, 12 1, 4 1 1, 2, 4, 8, 12,

16, 32

Maximum total

transmission rate

12.5 Gbps 30 Gbps 12.5 Gbps 2.125 Gbps 80 Gbps

Maximum total

transmission rate after

coding

10 Gbps 24 Gbps 10 Gbps 1.7 Gbps 64 Gbps

Maximum data packet

size (bits)

12144 32768 2048 16896 32768

Minimum data packet

size (bits)

512 160 32 32 32

Bit error rate 1.0e-12 1.0e-12 1.0e-12 1.0e-12 1.0e-12

ECC method CRC error

checking

when used

with 10Gbps

Ethernet,

8B/10B code

error

detection

CRC error

checking,

8B/10B code

error

detection

32- / 16-bit

CRC error

checking,

8B/10B code

error

detection

CRC error

checking,

8B/10B code

error

detection

32- / 16-bit

CRC error

checking,

8B/10B code

error

detection

DC-free code 8B/10B

coding

8B/10B

coding

8B/10B

coding

8B/10B

coding

8B/10B

coding

Signaling output

standard

Differential –

max 1.6 Vp-p

swing

Differential –

1.0 to 1.6

Vp-p swing

Differential –

1.0 to 1.6

Vp-p swing

Differential –

0.325 to 1.0

Vp-p swing

Differential -

0.8 to 1.2

Vp-p swing

Minimum receiver

input thresholds

Differential -

0.2 Vp-p

Differential –

0.175 Vp-p

Differential –

0.175 Vp-p

Differential –

0.2 Vp-p

Differential –

0.175 Vp-p

AC coupling

(or coupling

capacitance)

Yes 470 nF

minimum

Yes Yes for inter-

enclosure,

Optional for

intra-

enclosure

75 – 200 nF

Equalization Not required Pre-emphasis

or passive

equalization

Not required Required in

some

applications

De-emphasis

Transmitter signal rise

time

60 ps – 130

ps

100 ps

minimum

40 ps

minimum

75 ps - 192

ps

50 ps

minimum

Bit period 320 ps 400 ps 320 ps 470.59 ps 400 ps

Maximum total jitter

tolerance at receiver

0.65 Unit

Interval (UI)

0.65 UI 0.6 UI 0.62 UI 0.6 UI

Ratio of minimum

signal rise time to bit

period

0.1875 0.25 0.125 0.159 0.125

 17

1.3 Altera Stratix GX Development Board

There are two major suppliers of programmable devices that contain multi-gigabit

serial transceivers. They are Xilinx and Altera. Xilinx uses multi-gigabit serial

transceivers in their Virtex II Pro line of Field Programmable Gate Arrays (FPGAs) and

Altera has them in their Stratix GX line of FPGAs. This project will use an Altera Stratix

GX FPGA as the implementation and hardware test platform. Some comparisons

between the Altera Stratix GX and the Xilinx Virtex II Pro transceivers are shown in

Table 2. The device with the largest number of transceivers from each manufacturer has

been chosen for comparison and the actual Altera device (EP1SGX25FF1020) on the

Stratix GX development board to be used in this project has also been included. The

information in Table 2 was obtained from the datasheets for these devices from Xilinx

and Altera [6] [7].

A development board from Altera has been used for testing of the bit-error-rate-

test block and the error correction code block in this project. The development board

contains many different features described in detail in its datasheet [12]. The parts of the

development board used for this project were the Altera Stratix GX transceiver FPGA

device (part number EP1SGX25FF1020-5ES), the HM-ZD backplane connector and the

SMA connectors connected to the FPGA transceiver pins, the 7-segment displays and

other LEDs for status information display, and the dip switches for test setup.

The primary external connections for the Altera Stratix GX development board to

be used in this project are the connections from one of the quad transceivers to a Tyco

HM-ZD style backplane receptacle. This will provide a good approximation of a real

transmission channel including a backplane connector. A test backplane card containing

 18

a mating header for the receptacle on the Altera board will be used. This test backplane

card will loop the transmit differential pairs back to the receive differential pairs and

function as a loopback connector approximating an actual transmission channel.

Table 2 - Comparison of Altera and Xilinx multi-gigabit serial transceivers.

 Altera Stratix GX

(EP1SGX25FF1020)

Altera Stratix GX

(EP1SGX40GF1020)

Xilinx Virtex II Pro

(XC2VP70-7FF1704C)

Maximum transmission

rate per channel

3.1875 Gbps 3.125 Gbps

Total channels 16 20 20

Parallel data width 8, 10, 16, 20 bits 8,10,16,20,32,40 bits

Bit error rate 1.0e-12 1.0e-12

DC-free code built in 8B/10B Coding 8B/10B Coding

Error detection built in None CRC

Maximum run length

for clock recovery

80 UI 75 UI

Signaling output

standard

Differential – 0.35 to 1.6 Vp-p swing Differential – 0.8 to 1.6

Vp-p swing

Receiver input

thresholds

Differential 0.17 Vp-p swing Differential 0.175 Vp-p

swing

Internal termination 50, 60, 75 Ohm 50, 75 Ohm

AC coupling Required - Output common voltage is different than

input so AC coupling is required

Not required – Output

and input common

voltages are

programmable

Equalization Dynamically programmable preemphasis and

equalization

Programmable

preemphasis

Transmitter signal rise

time

60 ps – 130 ps 120 ps typical

Bit period 313.7 ps 320 ps

Maximum total jitter

tolerance at receiver

0.65 UI (not explicitly stated, but compliance to

XAUI jitter specification is stated)

0.65 UI

Total jitter output from

transmitter

0.3 UI 0.35 UI

Random jitter output

from transmitter

0.16 UI 0.18 UI

Intra differential pair

skew

10 ps 15 ps

 19

2 Literature Review

The earliest found reference to gigabit serial digital communications was at the

IEEE International Microwave Symposium in 1972. Gray presented a paper describing a

gigabit digital communication system. The system used QPSK to modulate two 500

Mbps bit streams on a 1.5 GHz carrier. The system contained a multiplexer and

demultiplexer that converted from 250 Mbps parallel Emitter Coupled Logic (ECL)

signals to 500 Mbps digital streams for modulation [13].

The state of gigabit digital communications by 1979 was that development was

still mostly in the conceptual stages. A lot of work had been done at that time on basic

circuit building blocks using technologies such as bipolar transistors in Si, GaAs

MESFETs and MOSFETs, and charge-coupled devices. Some applications where gigabit

electronics were taking hold around this time were in measurement and test, radar and

sensing systems, and communication systems. It was noted around 1979 that use in

computing applications was probably still a long way off because large scale computing

clock rates were still around 10 MHz and the processing power to handle all the data

bandwidth available in a gigabit serial link did not exist at that time [14]. It is interesting

that some of the signaling technologies described in 1979 such as ECL and Current Mode

Logic (CML) have become very common in recent years in multi-gigabit digital

communication applications.

By the 1980s, digital gigabit serial communication was being proposed as part of

the SONET (Synchronous Optical Networking) standard developed by Exchange Carriers

Standards Association. The standard provides for a uniform way of implementing optical

telecommunications networks [15]. One of the earliest commercially available devices

 20

implementing gigabit serial communications was developed by Vitesse Semiconductor

Corp. in conjunction with Bell Communication Research Laboratory, Livingston, NJ.

The device was a serializer and deserializer (SERDES) for converting 8-bit parallel data

to serial data at 1.24 Gbps. The device’s part number was the VS8010 and it first went

into production in May of 1988 [16]. Apparently this device was targeted at the OC-24

SONET data rate and the earliest uses of gigabit serial data communications were in

networking applications.

The use of gigabit serial data communications soon expanded from networking

applications to chip-to-chip interconnection applications. As system interconnection

bandwidth demands grew, gigabit serial data communications began to be applied to the

problem of interconnecting devices locally within printed circuit boards or within

chasses. One of the earliest demonstrated examples of this was presented by researchers

at the Hewlett Packard Lab, Palo Alto, CA. They presented an entire system operating

with serial links at 1.5 Gbps in 1991. The system still used fiber optics for the main

transmission channel but was targeted more at computer communication than telecom

networking. The chipset was noteworthy because it was one of the first silicon bipolar

designs operating at gigabit data rates instead of some of the other chipsets presented up

to this point that were designed in GaAs [17].

One of the oldest types of busses for interconnecting devices was the

asynchronous multi-drop parallel bus. In this type of architecture many devices are

connected together on a shared bus where only one device can send data at a time. A key

advantage of such busses in early systems was the efficient use of pins without too much

complexity. As Input/Output (IO) bandwidth requirements increased, the parallel bus

 21

was enhanced with a move from asynchronous to synchronous bus structures. This

allowed techniques such as pipelining and bursting and also allowed for a widening of

busses to improve data throughput. A familiar example of a synchronous parallel bus is

PCI. The synchronization of the parallel bus allowed for increased communication speed

at the expense of increased design complexity [1].

The next evolutionary advancement in the synchronous parallel bus was the

introduction of bridges. The bridges allow for various segments of a large multi-drop bus

to be isolated from each other to allow for larger overall bus structures with greater

throughput possible [18]. The parallel bus was further enhanced by switching from

multi-drop to source-synchronous, point-to-point architectures. This enhancement

enables full duplex data flow at even higher speeds. The cost of the increased speed is

increased design complexity since the signal paths must be more closely matched in

length [1].

A limitation with both the bridge architectures and especially with the point-to-

point source-synchronous architectures is the number of pins required on the devices.

The bridge devices must duplicate the entire parallel interface for the number of busses

connected to the bridge. In point-to-point systems with more than two devices connected

together, the interface pins must be duplicated for each additional device. The high pin

counts that these parallel architectures require along with the strict matching

requirements in the printed circuit board make it difficult to scale them up in speed, and

increase system cost [1]. An example of a source-synchronous parallel standard is

HyperTransport and it allows for a maximum of 12.8 Gbytes/s of bandwidth [19].

 22

The evolution from the parallel bus to the serial bus has been subtle. The source-

synchronous parallel bus is close in many respects to the serial busses that are becoming

popular. The main difference is that instead of a separate clock signal with data signals

all synchronized to it, serial busses embed the clock with the data on a single

transmission line. Serial standards allow for multiple lanes of serial data to be

transmitted similar to parallel busses, but there are not strict synchronization

requirements between lanes because each lane is its own complete communications link.

Serial busses eliminate the problems of clock and data skew and are able to work at up to

10 times the rate of a source-synchronous bus. Another advantage of serial busses is that

they lower device pin counts because equal amounts of data can be transmitted on many

fewer pins as compared to a parallel bus [1].

The advantages of serial busses are not free and come with the added complexity

of recovering the clock at the receiver, and requiring communication protocols that

embed all the necessary link information in the serial bit stream. Serial busses also allow

for much further data transmission than parallel by utilizing communication techniques

such as equalization. One drawback that exists with serial communication is

transmission latency due to all of the protocol and processing overhead required to

serialize, transmit, and deserialize the data. Some recent examples of standards that have

been developed for serial communication are SFI-5 (2.5 Gbps per lane with 16 lanes),

XAUI (2.5 Gbps per lane with 4 lanes), Serial Rapid IO (2.5 Gbps per lane with 1 or 4

lanes), Fiber Channel (1.7 Gbps per lane with 1 lane), Infiband (2 Gbps per lane with 1,

4, or 12 lanes), and PCI Express (2 Gbps per lane with 1, 2, 4, 8, 12, 16, or 32 lanes) [1].

 23

Source-synchronous standards such as HyperTransport still provide a viable

solution for chip-to-chip interconnection, but experts agree that serial interfaces have an

advantage in future applications. Some of the advantages of the serial bus are subtle such

as the easier printed circuit board (PCB) routing with fewer length-matching

requirements. Equalization at the receiver in serial busses allows for much greater

transmission length and allows the use of the same dielectric materials such as FR4

currently used in PCBs. A further enhancement that some manufacturers have

demonstrated is multi-level signaling in serial busses, which allows for even greater

transmission rates [20].

 24

3 Error Correction Code Functional Block

The design of the error correction code block consisted of several steps. The first

step was to characterize the typical communication channel used in multi-gigabit digital

communication systems. The next step was to describe the sources of noise and the types

of bit errors that each source of noise is likely to cause. After that the type of data to be

transmitted was defined. A general overview of various types of codes was then

developed to help understand which type of code best fits this application. Finally, after

all of these aspects of the system were characterized and the different types of coding

schemes were understood, a specific error correction code was designed for this type of

communication system.

3.1 Communication Channel

The capacity in bits per second of a communication channel was defined by

Shannon in [21] and is given by (1), where









+=

N

P
WC 1log2 . (1)

In this relationship, C is the capacity of the channel in bits per second, W is the

bandwidth of the channel in Hz, P is the average signal power of the signal transmitted

through the channel, and N is the average noise power in the channel. The bandwidth is

the absolute frequency range within which a signal is passed. In this absolute-bandwidth

definition, no signal energy is passed through the channel outside of the bandwidth.

Equation (1) assumes that the noise is Gaussian white noise. The capacity of the

 25

channel represents the maximum amount of information that can be sent through the

channel with an arbitrarily small rate of errors. In order to achieve this capacity, the data

will have to be encoded in a sufficiently complex way.

A more typical measure used in digital communication systems than the signal

power to noise power ratio in (1) is a normalized version of signal to noise ratio. This

measure is the ratio of the energy per bit to the noise power spectral density and its

relationship to the signal power to noise power ratio is given by (2), where

R

W

N

S

N

Eb ×=
0

.
 (2)

In this relationship, S, N, and W are the same as in (1), and R is the transmission bit rate

[22].

3.1.1 Channel Bandwidth

The gradual roll-off bandwidth of a typical communication channel does not

match the ideal or absolute bandwidth used in (1) for the channel capacity. In order to

establish the capacity of the serial digital multi-gigabit communication system channel, a

method of estimating the bandwidth must be used. The two methods considered in this

project are the half power bandwidth for the channel and the bounded power spectral

density bandwidth for the channel [22]. A block diagram of the system being modeled to

determine the bandwidth in this project is shown in Figure 3. This block diagram shows

the system without AC coupling capacitors. The analysis of the bandwidth has been

organized into two separate analyses, one for the maximum frequency based on the

frequency response of the channel without AC coupling capacitors, and one for the

 26

minimum frequency based on the frequency response of the AC coupling capacitors and

a 100-Ohm differential load.

Figure 3 - Differential transmission channel model block diagram.

The model used for the package is a behavioral HSPICE model available from

Altera for the Stratix GX device used on the Altera Stratix GX development board used

in this project. The models are for a transmitter differential pin pair and a receiver

differential pin pair. They cover the connection from the die of the Stratix GX device

through the via used to attach the ball grid array (BGA) package to the printed circuit

board (PCB).

 27

The models used for the IO and controller card PCB traces are based on typical

system implementations. The traces are typically designed to match the 100-Ohm

differential impedance of the driver and receiver. The traces are copper differential edge

coupled stripline traces that are embedded in PCBs constructed with FR4 dielectric

material. The trace parameters and view of the 2-dimensional cross section are shown in

Figure 4. From this cross section and the parameters shown, the 2D field solver in

Cadence Specctraquest was used to create a SPICE model of the differential trace. The

dielectric constant (Er) and dielectric loss tangent for FR4 are approximations based on a

PCB material comparison document found on Merix Corporation’s web site [23]. Merix

Corporation is a PCB fabrication company. The trace model is a lossy distributed

transmission line model in the form of a w-element model for use with HSPICE. The

Specctraquest field solver predicted the differential impedance to be 100 Ohms.

Figure 4 - IO and controller card differential trace, 2-dimensional cross section.

The model used for the backplane traces was created similar to the IO and

controller card traces and also based on typical system implementations. The trace

parameters and view of the 2-dimensional cross section of the backplane trace are shown

in Figure 5.

 28

Figure 5 - Backplane card differential trace, 2-dimensional cross section.

The model for the connector is based on a connector model available from Tyco

for the HM-ZD backplane connector. The specific HM-ZD connector model used in the

simulation is for an 8-row and 4-column version of the connector. The pins that were

simulated are differential pairs located in rows E and F and in the middle columns. The

Altera Stratix GX development board contains an 8-row, 10-column HM-ZD connector

as previously described. The connector model is a behavioral SPICE model for use in

simulations with the Synopsys HSPICE tool. The model includes the vias on both sides

of the connector.

The models were connected together and simulated in HSPICE with an AC

frequency sweep from 1 Hz to 15 GHz. The HSPICE circuit that was simulated is shown

in Figure 6. The circuit was simulated for two different lengths of backplane traces

 29

which were 10 inches and 40 inches. The simulated power gain of the channel is plotted

in Figure 7.

Figure 6 - Channel frequency response SPICE simulation circuit.

-70

-60

-50

-40

-30

-20

-10

0

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11

Frequency (Hz)

P
o

w
e
r

G
a
in

 (
d

B
)

Power Gain with 10 in. Backplane Trace Power Gain with 40 in. Backplane Trace

Figure 7 - Backplane channel power gain response excluding AC coupling capacitors.

 30

The point on the gain response where the gain has dropped to –3dB is the

maximum frequency used in the definition of the half power bandwidth. For the 10-inch

backplane trace, the –3dB point corresponds to 703.0 MHz. and for the 40-inch

backplane trace, the –3dB point corresponds to 246.1 MHz. The point on the gain

response where the gain drops below and stays below –35dB is the maximum frequency

used in the definition of the bounded power spectral density bandwidth [22]. For the 10-

inch backplane trace, this corresponds to 11.27 GHz. And for the 40-inch backplane

trace, this corresponds to 11.16 GHz.

Another common feature in the transmission channel of serial digital multi-gigabit

communication systems is the use of AC coupling capacitors. The AC coupling

capacitors perform high pass filtering on the data signal. This leads to a lower frequency

limit that is above zero, for the transmission channel. This lower frequency limit has

been considered separately from the high frequency limit that was analyzed without

including the AC coupling capacitors in the channel simulation model. A SPICE

simulation circuit to analyze the low frequency limit due to the AC coupling capacitors

for the differential transmission channel is shown in Figure 8. The AC coupling

capacitors are C1 and C2. An AC sweep simulation was performed and the differential

voltage gain ((Vout_p-Vout_n) / (Vin_p-Vin_n)) was plotted versus frequency. The

simulation was performed for two values of AC coupling capacitors, 75 nF and 470 nF to

represent the range of capacitor values used in the various serial digital multi-gigabit

communication system standards. The plot is shown in Figure 9.

 31

Rl_p

50

Rl_n

50

Vp

AC = 1
TRAN =

DC =

Vn

AC = 1

TRAN =

DC =

C1

75n

C2

75n

Vout_p

Vout_n

0

0

Rs_p

50

Rs_n

50

Vin_p

Vin_n

Figure 8 - AC coupling capacitor low frequency cut off simulation circuit.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Frequency (Hz)

G
a
in

 M
a
g

n
it

u
d

e
 (

d
B

)

Gain Magnitude for 75 nF Capacitors (dB) Gain Magnitude for 470 nF Capacitors (dB)

Figure 9 – Frequency response with AC coupling capacitors.

 32

The point on this gain response where the gain has dropped to –3dB is the

minimum frequency used in the definition of the half power bandwidth. For the 75 nF

capacitors, the –3dB point corresponds to 42.46 kHz and for the 470 nF capacitors, the –

3dB point corresponds to 6.776 kHz. The point on the gain response where the gain

drops below –35dB is the minimum frequency used in the definition of the bounded

power spectral density bandwidth. For the 75 nF capacitors, this corresponds to 754.8 Hz

and for the 470 nF capacitors, this corresponds to 120.5 Hz.

The bandwidth for each combination of backplane trace and AC coupling

capacitor is shown in Table 3. The AC coupling capacitor has very little effect on the

overall channel bandwidth because the low frequency cut off is very small compared to

the high frequency cut off.

Table 3 - Channel bandwidth results.

Backplane

Trace

Length

AC

Coupling

Capacitor

Half Power

Minimum

Frequency

(Hz)

Half Power

Maximum

Frequency

(Hz)

Bounded

Power

Spectral

Density

Minimum

Frequency

(Hz)

Bounded

Power

Spectral

Density

Maximum

Frequency

(Hz)

Half Power

Bandwidth

(MHz)

Bounded

Power

Spectral

Density

Bandwidth

(GHz)

10 in. 75 nF 4.246E+04 7.030E+08 7.554E+02 1.127E+10 703.0 11.27

40 in. 75 nF 4.246E+04 2.461E+08 7.554E+02 1.116E+10 246.1 11.16

10 in. 470 nF 6.776E+03 7.030E+08 1.205E+02 1.127E+10 703.0 11.27

40 in. 470 nF 6.776E+03 2.461E+08 1.205E+02 1.116E+10 246.1 11.16

It is clear from looking at the bandwidth results for the backplane channel that any error

correction code chosen should be as high a rate as possible since there is significant

attenuation of the higher frequency content of a multi-gigabit PCM NRZ-L signal.

 33

3.1.2 Channel Capacity

Equations (1) and (2) can be combined to give an expression of Eb / N0 in terms

of channel bandwidth and the channel capacity. With the transmission rate (R) assumed

to equal the channel capacity (C), the following equation is the result of this combination:

0

2 1

C

b W
E W

N C

 
= − 

  .

(3)

Using (3), the minimum required value of Eb / N0 for a transmission rate of 3.125

Gbps corresponding to the maximum rate of the Xilinx Virtex II Pro and Altera Stratix

GX transceivers is calculated and shown in Table 4.

Table 4 - Minimum Eb / N0 for transmission channel at 3.125 Gbps data rate.

Backplane

Trace Length

Half Power

Bandwidth

Bounded Power

Spectra Density

Bandwidth (GHz)

Minimum Eb / N0

Assuming W =

Half Power

Bandwidth

Minimum Eb / N0

Assuming W =

Bounded Power

Spectral Density

Bandwidth

10 in. 703.0 MHz 11.27 GHz 6.70 dB -1.17 dB

40 in. 246.1 MHz 11.16 GHz 27.19 dB -1.16 dB

More discussion will be given in subsequent sections regarding estimates of

Eb / N0 for serial digital multi-gigabit communication systems and the capacity of the

channel based on those estimates.

 34

3.2 Noise Sources

There are many sources of noise in a serial digital multi-gigabit communication

system including both random sources and deterministic sources. The various sources of

noise occur both within the transmitter and receiver integrated circuits and within the

communication channel. Some sources of noise are limited to the transistors in the

transmitter and receiver and other sources occur in both the transistors and in the

transmission channel interconnection. The noise sources that are referred to as

deterministic can be predicted exactly if enough information is known about the

communication channel characteristics and the transmitted data characteristics. They are

also bounded by the worst-case scenario whereas random noise is not bounded and is

assumed to follow a Gaussian distribution.

3.2.1 Random Noise

The first source of random noise is thermal noise and it occurs within the

transmitter and receiver transistors, the internal termination resistors, and all of the

electrical interconnections. The random motion of electrons in conductors causes

differences in voltage across a conductor even if the average current through the

conductor is zero. These differences in voltage are the thermal noise. The spectrum of

thermal noise is assumed to be flat over the frequencies of interest in serial digital multi-

gigabit communication systems and is therefore Gaussian white noise. For MOSFETs,

there is also thermal noise within the transistor itself, especially in the channel of the

MOSFET [24].

Besides thermal noise, another form of random Gaussian white noise that occurs

within current carrying interconnections is called shot noise. This type of noise results

 35

from an electrical charge crossing the potential barrier in a transistor. Since all charge

exists in discrete electrons, the charge is not continuously crossing the charge barrier but

each electron crosses the barrier discretely and the crossing is random in nature. The

random distribution of barrier crossings results in the apparent constant flow of current

that is observed. Statistical variations in the constant flow of current due to the random

nature of barrier crossings results in noise [25].

Another source of random noise occurs within the transistors in the transmitter

and receiver devices called flicker noise. A cause of this noise is that at the interface

between materials in an integrated circuit there are atoms that have unfilled bonds

available because they are not bonded with the differing material. These bonds serve as

traps because the free bonds allow extra energy states to trap passing electrons. Electrons

are trapped and released some time later. This type of noise has a spectral density that

follows a 1/f relationship with frequency [24]. This type of noise is sometimes referred

to as pink noise.

3.2.2 Deterministic Noise

The first source of deterministic noise is on the voltage rails that supply power to

the transistors in the transmitter and receiver ICs. This noise comes from various sources

including the circuits that generate the voltage supplies and voltage drops across the

inductance of the power distribution system during switching events (called simultaneous

switching noise). Noise on the power supplies causes changes in the behavior of the

transistors and leads to noise on the electrical signals used to send the information in

serial digital multi-gigabit communication systems. This noise is considered to be

uncorrelated to the data [26].

 36

Another type of noise is due to the proximity of the transmission channel

elements to other signals and is called crosstalk. Crosstalk occurs in connectors and

between traces and the problem increases as design density increases. For the Tyco HM-

ZD backplane connector on the Altera Stratix GX development board used in this project,

the maximum amount of crosstalk specified by the manufacturer is 1.6% of the signal

strength [27]. The amount of crosstalk between the traces can usually be limited in serial

digital multi-gigabit communication systems because there are fewer traces to route than

in traditional parallel busses and the spacing between traces can be kept large. Crosstalk

noise can be correlated or uncorrelated to the data. Crosstalk noise can also be sinusoidal

in nature [26].

Intersymbol interference is not actually noise but its effects are similar to noise.

The frequency dependent loss of the channel, as illustrated in the bandwidth plots in

Figure 7, causes the higher frequency content of the digital signal to be attenuated more

than the lower frequency content. This causes a dispersion of a pulse from one bit period

into adjacent bit periods. The spreading of a bit into subsequent bit periods degrades the

signal to noise ratio and can be thought of as noise. The largest contributor to frequency

dependent loss would be the traces that suffer from the skin effect and the dielectric

effect. The skin effect loss is proportional to the square root of frequency and the

dielectric loss is proportional to frequency [8]. The skin effect is caused by the crowding

of high frequency current to the outside surface of conductors, lowering the effective

conducting cross sectional area and increasing the effective resistance of the conductor.

The dielectric loss is caused by an increase in the conductance with frequency of the

dielectric medium surrounding a transmission line [8]. The effects of intersymbol

 37

interference can be mitigated through the use of pre-emphasis or equalization. Either of

these methods works by amplifying the high frequency components of the signal to

counteract the high frequency component attenuation by the transmission channel. Pre-

emphasis works by performing the amplification before the signal enters the transmission

channel at the transmitter, and equalization occurs by performing the amplification after

the signal exits the transmission channel at the receiver. The Altera Stratix GX

development board used in this project supports both pre-emphasis and equalization.

Another source of deterministic noise is duty cycle distortion. Duty cycle

distortion is usually the result of characteristics of the transistors in the transmitter and

receiver devices. Differences in the rise and fall times of signals inside the devices cause

a distortion of the bit period depending on if the bit is a 1 or a 0. Both intersymbol

interference and duty cycle distortion noise are considered to be correlated to the data

[26].

3.2.3 Noise Effects

Crosstalk and intersymbol interference are typically the two largest noise sources

in serial digital multi-gigabit communication systems [28]. In an analysis and simulation

of similar communication channels in [28], the crosstalk and intersymbol interference are

shown to be equal contributors of interference at 1.15 Gbps when no equalization is used.

Below 1.15 Gbps, crosstalk is the dominant source of interference and above 1.15 Gbps

intersymbol interference becomes the dominant source of interference. Using

equalization can shift the crossover point out to 6.25 Gbps.

Noise due to crosstalk and intersymbol interference is bounded and is referred to

in the literature as being deterministic [28]. Because the noise is bounded, serial digital

 38

multi-gigabit communication systems are designed so that these two factors and all the

rest of the deterministic noise sources will leave sufficient noise margin for the system to

operate without bit errors. The addition of the Gaussian random unbounded noise on top

of the deterministic noise is what will lead to violations of noise margin and bit errors.

This conclusion is based on the way in which bit error rates are defined for serial digital

multi-gigabit communication systems as explained in [26]. The methodology of defining

bit error rates will be explained in more detail in section 3.4.4.

The bit error rate for serial digital multi-gigabit communication systems is defined

in terms of jitter instead of the classic Eb/N0. Jitter is the error in the timing of a signal.

Jitter is, strictly speaking, not noise, but a result of noise. Noise causes the transitions of

bits to shift in time from their ideal position and this shifting is referred to as jitter. Jitter

leads to the closure of the eye diagram because of horizontal variations in signal

transitions, and is categorized as deterministic or random jitter. Deterministic jitter is

caused by the deterministic noise and random jitter is caused by the random noise.

Deterministic jitter sources are classified into the categories of duty cycle distortion, data

dependent (ISI or crosstalk), sinusoidal (power supply noise), and uncorrelated bounded

(crosstalk) by Information Technology - Fibre Channel - Methodologies for Jitter

Specification [26]. The total jitter is the combination of the deterministic and random

jitter. Just as random noise is unbounded, random jitter is also unbounded. Models are

used with defined bit error rates in standards such as Fibre Channel, XAUI, and PCI-

Express, to set the maximum jitter allowed and the maximum jitter the receiver must be

able to tolerate [26]. It is noted that noise also affects the magnitude of the signal as well

as the position in time of the transitions. The magnitude effects show up as the vertical

 39

variations in signal transitions, which lead to the closure of the eye diagram. Since the

standards define bit error rate in terms of jitter, they are based on the assumption that the

probability of bit errors due to magnitude noise must be much smaller than the

probability of bit errors due to jitter.

3.3 Transmitted Data

The source data in chip-to-chip communications can come in many different

forms such as streaming video, network data packets, and simple data-word read and

write requests. This diversity of source data is a reason why all of the serial digital multi-

gigabit communication standards reviewed in section 1.2 allow for variable length data

payloads. The PCI-Express standard encompasses the whole range of data payload sizes,

from 32 bits up to 32768 bits. Any error correction code developed for chip-to-chip

communications must permit small enough block sizes so that when used in typical

applications, data packets do not have to be padded with non-data bits in order to be

transferred. This would be inefficient use of the available data bandwidth. A reasonable

data block size for an error correction code would not exceed 32 bits to correspond with

the smallest available data block size in the standards. With typical memory bus widths

being 64 bits and the future use of processors with 64-bit and 128-bit data paths, choosing

64 or 128 bits as the data block size would also be reasonable.

In addition to the requirement of a small enough block size so that data transfer

can occur without needing a lot of padding, another similar requirement relates to the

latency for data transmission from the information source to the information sink. The

tolerable latency again depends on the type of information being sent, and chip-to-chip

communication systems need to support many different types of information. A classic

 40

parallel bus standard used in low latency chip-to-chip interconnections is the PCI bus.

The latency defined in PCI-X Addendum to the PCI Local Bus Specification is 16 clock

cycles [29]. Since the PCI bus is a parallel architecture, each clock period represents one

block period with a block size as small as 32 bits. A reasonable maximum latency would

be 16 times the minimum data block period for PCI-X, which is 7.5 ns (corresponding to

133 MHz PCI-X specification). This would be a maximum latency of 120 ns.

The PCI-Express and Serial Rapid IO specifications both use 8B/10B coding for

maximum run length limiting and a 16-bit or 32-bit CRC for error checking depending on

the block size and data type. For small block sizes of 32 bits, a 16-bit CRC with 8B/10B

coding provides an overall code rate of 0.533. For a larger block size (the largest with

Serial Rapid IO) of 2048 bits, the code rate would be 0.788. These numbers provide

some insight into the code rates that would be acceptable for the error correction coding

in this design project. A code rate closer to 0.788 would be much more desirable.

There are three aspects of the system that are affected by the maximum run length

of the coded data. The first is the clock and data recovery that must be performed by the

receiver on the transmitted data pattern. The maximum run length allowed by the Xilinx

and Altera devices for clock recovery is 75 bits. The second is the magnitude of voltage

at the receiver. The transmitted voltage will initially be passed through the AC coupling

capacitor because it is transient and not a DC signal. As the transmitted voltage remains

in one state though, corresponding to a long string of 1s or 0s, the AC coupling capacitor

will block the DC content and the voltage at the receiver will decay according to the RC

time constant. For the Xilinx and Altera Devices, the worst-case voltage margin

(minimum output voltage of 0.35 V minus minimum required input voltage of 0.17 V) is

 41

0.18 V. A conservative requirement is that voltage margin not drop by more than 1%,

due to the coupling capacitor effect, which corresponds to a maximum voltage drop of

the voltage at the transmitter of approximately 0.5%. Assuming a 100-Ohm load

resistance, a worst case capacitance of 150 nF (two 75 nF capacitors), and a maximum

allowed voltage decay of 0.5%, the argument of the logarithmic function in (4) is 0.995

and the maximum time between transitions is calculated using (4) to be 75.2 ns, where








 −
−=

out

droopout

l
V

VV
CRt ln . (4)

 This corresponds to 150 bits at 2 Gbps and because the maximum run length

(MRL) must be limited to 75 bits for clock recovery, the voltage droop due to the AC

coupling capacitor will not impose any additional requirement. However, even with the

MRL limited to 75 bits, the degradation of noise margin could still exceed 1% if the

running disparity is not appropriately limited, that is, if the DC level of the data signal is

not appropriately bounded. For example, a data signal that repeatedly contains the 64-bit

pattern of 63 logic-1 bits (at + 0.35V) followed by one logic-0 bit (at -0.35V) has an

MRL of 63 bits, but has such a large DC level that it will cause the voltage on the other

side of a coupling capacitor (after several repetitions of the data pattern) to never reach

the minimum level of +0.17V needed to be recognized as a logic-1, and will not meet the

noise margin requirement.

The third consideration is deterministic jitter caused by the voltage droop at the

receiver during a long string of 1s or 0s. The problem is illustrated in Figure 10, which

shows an approximation of the jitter based on the parameters of peak-to-peak voltage,

voltage droop, and the 10% to 90% rise time.

 42

Time

V
o

lt
a
g

e

Vrcv (No Droop) Vrcv (Droop)

Vpp/2

Vpp/2 - Vdroop

-Vpp/2

-Vpp/2 - Vdroop

t1

t2

Slope of transitions = 0.8*Vpp / tr_10%-90%

Figure 10 - Deterministic jitter from AC coupling.

The difference between t1 and t2 in Figure 10 is the peak-to-peak magnitude of the

deterministic jitter and can be approximated by (5), where

2 1 (1.25)
Vdroop

t t tr
Vpp

− = . (5)

From (5), with a maximum voltage droop of 0.5% of the peak voltage, or 1% of the

peak-to-peak voltage, and a rise time of 130 ps, corresponding to the maximum rise time

of the Altera and Xilinx transceivers, a peak deterministic jitter of 1.625 ps results. This

is very small (corresponding to 0.00508 UI at 3.125 Gbps), so the 150-bit maximum run

length that would cause a voltage droop producing this amount of jitter is sufficiently

 43

small. The overall MRL limitation is imposed by the first aspect discussed above, and is

75 bits.

3.4 Probability of Bit Error

There are a few different ways to characterize the probability of a bit error in a

serial digital multi-gigabit communication system. The first method is the traditional plot

of bit error rate versus Eb / N0, which assumes that all the noise in the channel is

Gaussian. As discussed in section 3.2, the dominant noise sources are deterministic so an

alternative approach is to plot the probability of a bit error versus Eb / N0 with the

deterministic disturbances considered. The use of both of these first two methods

provides a good way to approximate the true transmission capacity of the channel. The

final method is the one used within communication standards such as Fibre Channel in

which the probability of a bit error is plotted versus jitter [26].

The current standards for serial digital multi-gigabit communication systems use

8B/10B coding for maximum run length limiting and CRC coding for error detection.

3.4.1 Bit Error Rate versus Gaussian Noise

An important measure of performance of a digital communication system is the

probability of a bit error or the bit error rate. For different types of modulation and

coding schemes, the probability of a bit error can be plotted versus the signal to noise

ratio for Gaussian noise channels [22]. The signal to noise ratio in these plots is typically

expressed as Eb/N0, as used in (2). The required bit error rate for all of the serial

standards reviewed in section 1.2 is 1.0e-12. The modulation and signaling type used in

the serial digital multi-gigabit communication systems under consideration in this project

 44

is differential-voltage baseband PCM with the NRZ-L signal format. An expression for

the bit error rate versus Eb/N0 for this signaling is given in (6). In (6), Q(x) and erfc(x)

are two forms of the complementary error function used to compute the area under the

tail of a Gaussian function [22]. Thus,





















=












=

2

2

2

1
2

0

0

N

E

erfc
N

E
QP

b

b

B . (6)

Using (6), a plot of the probability of a bit error versus Eb/N0 has been plotted in

Figure 11. In this figure, the value of Eb/N0 corresponding to a bit error rate of 1.0e-12 is

shown to be 13.9 dB.

1.E-20

1.E-19

1.E-18

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-2 0 2 4 6 8 10 12 14 16 18

Eb / N0 (dB)

P
ro

b
a
b

il
it

y
 o

f
B

it
 E

rr
o

r

Pb - Bipolar Signaling

Figure 11 – Probability of bit error for Gaussian noise channel.

 45

3.4.2 Bit Error Rate versus Gaussian Noise with Deterministic Noise

The largest noise sources in serial digital multi-gigabit communication systems

are not Gaussian but are deterministic as pointed out in section 3.2.3. The Gaussian noise

in a serial digital multi-gigabit communication system operating at 3.125 Gbps,

corresponding to a bit error rate of 1.0e-12, was shown in [30] to be much lower than that

predicted by (6). In [30], Ahmad and Cain analyzed the performance of the

communication channel and showed the noise due to intersymbol interference and

crosstalk were the largest noise sources. A plot of the probability of bit error was plotted

versus Gaussian Eb / N0 assuming the added distortion due to intersymbol interference

was present. The result was a curve of very similar shape to Figure 11 but shifted to the

right significantly. At a bit error rate of 1.0e-12 the resulting value of Eb / N0 was about

28 dB. Another thing shown in [30] was that when intersymbol interference and random

jitter of the receiver sampling clock are both considered, there is a floor to how low the

probability of a bit error can go, and increasing Eb / N0 does not further reduce the

probability of bit error. This is a similar effect to that discussed by Sklar in [22] about

how intersymbol interference distorts the received signal in a communication system and

creates a lower limit to the achievable bit error rate. The largest floor shown in [30]

occurred at a bit error rate of around 1.0e-39. This provides confidence that serial digital

multi-gigabit communication systems operating at rates up to 3.125 Gbps and typically

requiring a bit error rate of approximately 1.0e-12 are not operating near the bit error rate

floor, and that error correction coding can be an effective means to lower the bit error rate

in such systems.

 46

3.4.3 Transmission Capacity of the Channel

Using the two values of bandwidth, W, determined from the SPICE simulation

described in section 3.1.1, for a 40-inch backplane transmission channel, (3) was used to

plot the capacity of the channel, C, as a function of Eb / N0, and the results are shown in

Figure 12. Assuming that a backplane communication channel operates with Eb / N0

high enough to achieve the target bit error rate of 1.0e-12 without the use of coding, the

channel capacity of the backplane communication channel (with the use of coding) lies

somewhere between the two plots of capacity versus Eb / N0 on Figure 12, at that

operating value of Eb / N0. The value of Eb / N0 needed to achieve the target bit error rate

of 1.0e-12 without coding will be between 13.9 dB and 28 dB, as determined in the

previous two sections. The value of 13.9 dB is needed by the channel without coding to

achieve a target bit error rate of 1.0e-12 for a Gaussian noise channel. The value of 28

dB is needed by the channel without coding to achieve a target bit error rate of 1.0e-12

for an intersymbol interference dominated channel. When deterministic noise is present,

if all of the deterministic noise could be eliminated through equalization filtering,

advanced crosstalk cancellation techniques, or any other methods making use of the

deterministic nature of the noise, then the capacity of the channel at an Eb / N0 of 28 dB

could in theory be reached. In reality it is not possible to eliminate all of the

deterministic noise. If on the other hand the channel is operating with only random

Gaussian noise, which Shannon showed is the worst-case type of noise in [31], then the

capacity would be at least that corresponding to Eb / N0 of 13.9 dB. In Figure 12, the

maximum transmission rate of 3.125 Gbps supported by both the Xilinx Virtex II Pro and

the Altera Stratix GX is shown on the graph at Eb / N0 of 13.9 dB and 28 dB.

 47

0.001

0.01

0.1

1

10

100

1000

-2 3 8 13 18 23 28 33 38 43 48

Eb / N0 (dB)

C
a
p

a
c
it

y
 (

G
b

p
s
)

Based on Channel Capacity for 40 in. Backplane (Half Power Bandwidth = 246.1 MHz)

Based on Channel Capacity for 40 in. Backplane (Bounded Power Spectral Density Bandwidth = 11.16 GHz)

13.9 dB and 28 dB Estimates Based On Maximum Data Rates Supported by Xilinx and Altera

Figure 12 - 40-inch backplane channel capacity.

Table 5 shows the values of capacity from Figure 12 corresponding to 13.9 dB

and 28 dB. The serial digital multi-gigabit communication systems implemented using

Xilinx and Altera devices are operating quite a bit below the channel capacity defined by

the bounded power spectral density bandwidth. Since reliable communication can occur

without coding at the maximum transmission rate for Xilinx and Altera devices and even

the next generation of devices supporting 10 Gbps communication will still be well

below the capacity, it is unlikely that coding is necessary to allow data transmission to

occur in serial digital multi-gigabit communication systems. The goal of coding in these

systems is therefore to lower the bit error rate.

 48

Table 5 - Channel capacity.

Channel Type Eb / N0

Half Power

Bandwidth

Bounded

Power Spectral

Density

Bandwidth

Capacity

Based on

Half Power

Bandwidth

Capacity

Based on

Bounded

Power Spectral

Density

Bandwidth

13.9 dB 5.30 Gbps 85.0 Gbps
10 in. Backplane

28 dB
703.0 MHz 11.27 GHz

9.14 Gbps 146.5 Gbps

13.9 dB 1.86 Gbps 84.1 Gbps
40 in. Backplane

28 dB
246.1 MHz 11.16 GHz

3.20 Gbps 145.1 Gbps

3.4.4 Bit Error Rate versus Jitter

In most of the current serial digital multi-gigabit communication system standards

described in section 1.2, the bit error rate is specified in terms of jitter instead of in terms

of Eb / N0. Jitter is classified as either random or deterministic as previously discussed.

Deterministic jitter is bounded and is characterized by a peak-to-peak value. Random

jitter is unbounded and is characterized by an rms value. This rms value is equivalent to

the standard deviation of the gaussian distribution of the jitter. A given number of

standard deviations corresponds to a bit error rate, so a peak-to-peak value of random

jitter that is sometimes referred to is the rms value multiplied by a number of standard

deviations that corresponds to a specific bit error rate. The definition of bit error rate

versus jitter described in this section is based on Information Technology - Fibre Channel

- Methodologies for Jitter Specification [26].

If only random jitter is present, the bit edge position can be plotted as a Gaussian

probability density function (PDF) versus the time at which the edge occurs. The time

value is usually normalized to the unit interval (UI). A value of 1 UI corresponds to the

 49

bit period. The mathematical representation of this Gaussian PDF is given as (7) [26],

where

2

2

2
1

2

1
)(σ

σπ
⋅

−

⋅⋅=

t

etJT . (7)

In (7), t is the jitter time and σ is the standard deviation of the random jitter, both in

units of UI. The function is plotted, centered at 0 UI for the leading edge of a bit, and

centered at 1 UI for the trailing edge of a bit.

Receiver jitter tolerance is defined as the time window centered about the middle

of the bit period, such that if both leading-edge and trailing-edge transitions occur outside

of the window, the receiver will make the correct decision as to whether the bit is a 1 or a

0. If either the leading-edge or trailing-edge transition occurs within the window, then it

is assumed that the receiver will make the wrong decision and a bit error will occur. The

probability of a bit error is the area under the tails of the PDFs from (7) that fall beyond

jitter tolerance thresholds as shown in Figure 13 times the likelihood that a transition

occurs. The likelihood of a transition, or transition density (TD, referred to as α), is

usually assumed to be 0.5 meaning that half of the bits result from a transition. The

expression for the total bit error rate is given by (8) [26], where

∫∫ ∞−

∞

−⋅+⋅=
lRth

lLth
dUIJTdJTPb

_

_
)1()(τταττα . (8)

In (8), α is the transition density for the data, JT is given by (7), Lth_l is the left side

receiver jitter threshold in units of UI, and Rth_l is the right side receiver jitter threshold

 50

in units of UI. The receiver jitter tolerance is usually specified in terms of the maximum

amount of tolerable jitter that results in the error window however. For example, the

Altera and Xilinx devices specify a receiver jitter tolerance of 0.65 UI and this

corresponds to a window opening of (Rth_l – Lth_l) = 0.35 UI. The average value of

Lth_l and Rth_l is equal to 0.5 for any system where the jitter PDF is an even function, so

in this example, Lth_l would be 0.325 UI and Rth_l would be 0.675.

Figure 13 - Gaussian random jitter probability density function at each bit edge.

One other thing to note is that for a receiver jitter tolerance of 0.65 UI, the

maximum allowed peak-to-peak jitter is 0.65 UI. At a given bit error rate, this total jitter

budget can be divided between deterministic and random jitter and both values would be

referred to as peak-to-peak values. However, the random jitter is unbounded, so it does

not have a peak-to-peak value, but the allocation of the total peak-to-peak jitter budget to

 51

random jitter can be converted into a maximum allowed rms jitter for any given bit error

rate as a design criteria for a system. For a bit error rate of 1.0e-12 the value of peak-to-

peak random jitter is 14 times the rms jitter. The rms jitter is the same as the standard

deviation from (7).

A worst-case model for the deterministic jitter that is to be added to the random

jitter assumes that the transition edge is equally likely to occur at either of the two peaks

of the peak-to-peak deterministic jitter value. The PDF of deterministic jitter would then

consist of two impulse functions, each of weight 0.5, one at each of the two peak values.

The combined PDF of the random and deterministic jitter is the convolution of the

random jitter PDF from (7) and the deterministic jitter PDF. The resulting expression is

given by (9) [26], where



















+⋅⋅
⋅

= ⋅









+−

⋅









−−

2

2

2

2

2

2

2

2
1

22

1
)(σσ

σπ

W
t

W
t

eetJT
.

(9)

In (9), t is the jitter time, W is the peak-to-peak magnitude of the deterministic jitter, and

σ is the standard deviation of the random jitter, all in units of UI. A plot of the PDF for

the case of the jitter requirements of the XAUI standard is shown in Figure 14. The

XAUI standard specifies a maximum total jitter of 0.65 UI at the receiver, with 0.47 UI

being the peak-to-peak deterministic jitter and 0.18 UI being the specified maximum

peak-to-peak random jitter. At a bit error rate of 1.0e-12, 0.18 UI of peak-to-peak

random jitter corresponds to a value of σ equal to 0.0129 UI.

 52

0

2

4

6

8

10

12

14

16

-0.5 0 0.5 1 1.5

Time (UI)

P
ro

b
a

b
il

it
y
 D

e
n

s
it

y

Left Side PDF Right Side PDF Receiver Threshold Window

DJ peak to peak = 0.47 UI

RJ peak to peak = 0.18 UI

RJ RMS = 0.0129 UI

Figure 14 - XAUI PDF of bit transition times.

The areas under the PDFs for the left and right transitions were computed numerically

from the sample point to infinity for the left PDF of Figure 14 and from negative infinity

to the sample point for the right PDF of Figure 14 as indicated by (8). Normally in

statistics, the area under each PDF from negative infinity to infinity is equal to 1 since the

event must occur somewhere. For this analysis, though, when determining the

probability of a bit error, each integrated PDF is multiplied by the transition density

which is assumed to be 0.5. The sum of the areas under the two PDFs shown in Figure

14 (each one including two Gaussian-shaped sections), across the entire PDFs, would be

2, but since each is multiplied by the transition density of 0.5 the sum is 1. The overall

probability of bit errors for a given sampling point is the sum of the two areas under the

PDFs, over the appropriate intervals, times the transition density of 0.5. One important

assumption of this mathematical model is that transitions from neighboring bit positions

do not contribute to the probability of a bit error. The total bit error rate is plotted in

 53

Figure 15 and this type of plot is typically referred to as a bathtub curve because the

shape resembles a bathtub.

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

-1 -0.5 0 0.5 1 1.5 2

Sampling Point (UI)

P
b Total Bit Error Probability

Receiver Threshold Window

DJ peak to peak =0.47 UI

RJ peak to peak = 0.18 UI

RJ_rms = 0.0129 UI

Figure 15 - Probability of bit error plot for XAUI.

To evaluate whether the error correction code employed is effective at reducing the bit

error rate, a plot such as in Figure 15 will be made for the uncoded and coded systems for

comparison purposes.

There are some possible drawbacks to the jitter method of specifying the bit error

rate. The first is that it assumes that bit errors only occur on bits that are the result of a

transition or have a transition as the next bit. There must also be some probability in

NRZ-L for a bit error to occur for a bit with no transitions on either side of it. This

probability must be assumed to be small enough to not matter significantly. The next

drawback is that the transition density of the data is assumed to be 0.5 and this will vary

in real data. Another drawback is that the method assumes an unrealistic distribution of

deterministic jitter. The real distribution will be continuous over the range of the peak-

 54

to-peak deterministic jitter. The distribution assumed is a good worst-case approximation

and it is likely that the true distribution would lead to a lower bit error rate.

Finally, the bit error rate analysis based on jitter assumes that if a transition occurs

within the receiver threshold window that it will cause a bit error. In reality, it probably

depends on where in the threshold window it occurs as to whether or not a bit error is

made and there will be a probability density function for whether or not a bit error is

made versus the transition location within the receiver threshold window. Despite these

drawbacks this method should provide an upper bound on the probability of a bit error,

provides design criteria for deterministic jitter, and provides a means to compare coded

and uncoded systems. In reality, the systems specified with a bit error rate of 1.0e-12

will likely be operating at a lower bit error rate because of these drawbacks. This may

present a problem for measuring the bit error rate due to the large amount of time needed

to count enough bit errors for a valid measurement.

3.5 Error Correction Code Selection

The goal of the error correction code design for serial digital multi-gigabit

communication systems in this project is to lower the bit error rate for a given data rate

and specified total jitter, or allow the same bit error rate but with more deterministic

jitter. This section contains a summary of the specific code requirements as previously

discussed and a discussion about the choice of error correction code to be implemented.

3.5.1 Summary of ECC Requirements

The requirements of the error correction code (ECC) and the parameters of the

communication channel, the transmitter, and the receiver are summarized in Table 6. The

 55

parameters of the channel, transmitter, and receiver, given in Table 6, are based on the

XAUI specification and the Altera and Xilinx FPGA device capabilities. The

requirements have been established based on the discussion in sections 3.1, 3.2, 3.3, and

3.4. The ECC designed in this project will be based on these parameters and

requirements.

Table 6 - ECC design criteria.

 Description Value

Transmitter rms random jitter 0.18 UI / 14 = 0.0129 UI

Deterministic jitter at 3.125 Gbps 0.47 UI

Receiver jitter tolerance 0.65 UI
Parameters

Coded data block size Multiple of 8 or 10 bits

Maximum data block size 128 bits

Uncoded data block size Multiple of 8 bits

Maximum decoding latency 120 ns

Minimum code rate 0.64

Target code rate 0.79

Maximum run length of constant 0 or 1 data 75 bits

Error correcting capabilities Random bit errors

Target corrected bit error rate (at deterministic

jitter specification)
1.0e-17

ECC Requirements

Target corrected bit error rate (at 10% increase

in deterministic jitter specification
1.0e-12

 56

3.5.2 Maximum Run Length Limit

In order to limit the maximum run length of 0 bits or 1 bits, extra bits must be

added such that transitions can be forced. When maximum run length (MRL) coding is

used in conjunction with error correction coding, the performance of the error correction

code (ECC) can be affected by the MRL code. This occurs if the MRL code occurs after

the ECC on the transmitter side. The decoding of the MRL code at the receiver can

multiply single bit errors into multiple bit errors. In the case of 8B/10B coding, a single

bit error into the 8B/10B decoder could be multiplied into a multiple bit error out of the

decoder, or cause a code word to be invalid, or cause a disparity error. In the latter two

cases the 8B/10B decoder algorithm cannot even produce a valid output sequence and

usually just signifies the appropriate error type to the next communication layer. If the

MRL code occurs before the ECC at the transmitter, this problem is eliminated but a new

problem is created. The problem is that the ECC can then upset the MRL characteristics

imposed by the MRL code.

Regarding the problem with having the MRL code before the ECC in the

transmitter, there are ways to construct the error correction output code word to limit the

impact on the MRL code as discussed in [32]. These techniques work well with block

error correction codes. A block diagram of the proposed coding for the transmission

system is shown in Figure 16. The MRL code to be used in this ECC system will be

designed so that it meets the required MRL constraints and matches the required data

widths, that is block sizes, on the data source side and the error correction code side.

 57

Figure 16 - MRL and ECC system design block diagram.

3.5.3 Discussion of Code Choice

The large number of error correction codes available from research going on since

Shannon presented his first work on digital communications and information theory

makes code selection difficult for any new application. Generally error correction codes

fall into two main categories, block codes and convolutional codes. There are also

advanced coding schemes that use concatenated codes and iterative decoding such as

turbo codes. The following discussion on selecting a code to use in a serial digital multi-

gigabit communication system begins by narrowing down the choices, and then focusing

 58

on the specific type of codes that will be most applicable and making a selection from

them.

Turbo codes were developed in 1993 by Berrou, Glavieux, and Thitimajshima

[22]. The specific code demonstrated had a rate of 0.5 and was able to provide a bit error

rate of 1.0e-5 at Eb / N0 of 0.7 dB using binary phase shift keying (BPSK) modulation in a

random error channel. A convolutional turbo code contains two convolutional codes and

an interleaver / deinterleaver, and the decoder operates by iteratively going through two

decoding stages, using soft inputs and soft outputs [22]. At high signal-to-noise ratios,

the decoded bit error rate for this type of code has been shown to level off at a relatively

low bit error rate because of the low hamming distance, and increasing the signal-to-noise

ratio does not further reduce the probability of bit error. Therefore, the code performance

is relatively poor at very low bit error rates [33]. Turbo codes based on concatenated

convolutional codes are not suitable for this application for many reasons. First, there is

no soft decoding information available from the transceivers in the Altera and Xilinx

devices. The code rate of 0.5 is too low and the decoding latency required for

convolutional decoding, plus interleaving and deinterleaving, and then iteration of this

process would be too long. In addition, the complexity would make it very difficult to

implement in an FPGA processing bits at multi-gigabit rates. Also, this application is

operating at bit error rates much lower than where this code performs well.

Convolutional turbo codes are thus ruled out.

Another form of turbo coding described in [34] is to perform iterative decoding

on two block codes concatenated together. This has been shown to have good

performance at low bit error rates and can use a higher code rate. The complexity for

 59

implementation is probably beyond the capabilities of an FPGA for multi-gigabit data

rates, but more detailed analysis would be needed to determine this for sure. The main

problem would still be the latency introduced by the iterative decoding. This rules out

block turbo codes.

Convolutional codes have been used extensively for moderate bit error rate and

low Eb / N0 applications such as deep space and satellite communications [33]. They are

different from block codes in that there are not discrete output code blocks that are

independent of the blocks on either side of them. Output code words depend on the

present and previous input code words. Every output code word consists of n bits and

every input code word consists of k bits, which is similar to a block code, but one

additional parameter defining the number of previous input code words an output

depends on is called the constraint length v. The performance of the code depends on the

constraint length v and increases as v increases. Also, convolutional codes can be

implemented using hard decisions or soft decisions with a performance increase possible

by using soft decisions [22]. The performance of convolutional codes at very low bit

error rates is not widely published. The sources available seem to consider them in the

context of moderate bit error rate and high noise applications. The rates commonly

discussed are 0.5 or less. Convolutional codes having rates above 0.75 are uncommon,

and higher rate convolutional codes appear to be difficult to implement due to decoding

complexity. One exception is the use of puncturing, where a lower rate parent code is

used but specific code bits are punctured or removed prior to transmission, thus resulting

in a higher rate code. Punctured codes allow for higher rate convolutional codes while

using a lower rate decoder because the punctured bit locations are filled in at the receiver

 60

with what are called erasure bits that effectively have a level midway between logic 0 and

1 when soft decisions are used [35]. These aspects of convolutional codes do not make

them ideal candidates for the serial digital multi-gigabit communication system.

There are many different ways to decode convolutional codes including the

maximum likelihood Viterbi algorithm, sequential decoding, and majority-logic decoding

[35]. Viterbi decoding is optimal but complexity increases exponentially with the

constraint length v and there are practical limits on how large v can be in real

implementations [35]. The number of computations required per bit for Viterbi decoding

is 2
v
. The decoding delay for a Viterbi decoder can also be long and is h + m where m is

the memory order of the code and h is the length of a frame usually assumed to be much

larger than m [35]. Each input bit to a convolutional code is shifted through a number of

memory stages and each output bit from a convolutional code is a logical combination of

the contents of the memory stages after each shift. The longest number of shift stages for

any of the bits is referred to as the memory order, m and the sum of the shift stages for all

the bits is referred to as the constraint length v [35]. For an infinite length data stream,

valid data bits will be transmitted out of a convolutional encoder once all of the shift

stages are loaded and will continue forever. For a finite length data stream, data must be

formatted into frames to be transmitted and extra padding bits must be shifted into the

encoder after the valid data bits so that the code bits corresponding to those last data bits

are shifted out. It is desirable to limit the amount of padding bits in relation to the frame

size so the amount of overhead that they add to the code rate, referred to as fractional

loss, is small. This is what is meant by the frame size h [35]. The number of

computations required for multi-gigabit data rates would be much too large for an FPGA

 61

implementation using a reasonable constraint length to achieve the performance

necessary. Also, the decoding delay is too long and therefore Viterbi decoding of

convolutional codes is ruled out.

Sequential decoding of convolutional codes is less than optimal but since its

complexity depends on the noise level in the received data and not v, large constraint

lengths and thus very good performances can be realized. The decoding complexity is

variable depending on the noise in the received sequence and averages about 1 to 2

computations per bit [35]. A drawback is that for noisy received sequences the increased

number of computations and thus time taken to decode the information can cause buffer

overflows and data could be lost in practical implementations. While the processing

power required for sequential decoding is less than Viterbi, more memory is usually

required. The decoding delay for a sequential decoder is the same as that for a Viterbi

decoder [35]. The processing complexity is still too large to implement at multi-gigabit

rates, the memory requirements are too great, and the decoding delay is too long.

Sequential decoding of convolutional codes is ruled out.

Majority logic decoding of convolutional codes is much simpler than Viterbi or

sequential decoding but the simplification comes at the expense of code performance.

Only one computation is required per bit. The decoding delay is also much smaller than

that for the Viterbi or sequential decoding and is equal to the memory order m. For

applications requiring a large minimum distance to achieve the desired bit error rate

performance, very long constraint lengths are required and Viterbi or sequential decoders

may provide better performance to complexity trade offs [35]. It may be possible to

implement a majority logic decoder with convolutional coding in an FPGA

 62

implementation at multi-gigabit data rates and meet the latency requirements. The

performance at low bit error rates as previously mentioned is not widely published.

Because of the unknown performance of convolutional codes at low bit error rates, and

potential difficulties in implementing even the simpler majority logic decoder in an

FPGA, block codes are expected to provide a better solution for the serial digital multi-

gigabit communication system.

Linear block codes are codes that systematically transform a block of k bits into a

larger block of n bits and thus have a code rate of k/n. The term block length is used to

describe n, the number of bits in a coded block for a block code. The meaning of linear is

that the result of adding any two code words together with modulo-two additions is also a

code word. Linear block codes vary widely in block size, complexity, decoding latency,

and bit error correction and detection performance. They can also be applied effectively

to random error channels, burst error channels, or combinations of the two [35]. Block

codes have been applied extensively in the area of data storage applications [33]. The

interesting thing about data storage systems, especially SDRAM storage, is that they

typically transfer data at data rates in the multi-gigabit range. For example a typical

Double Data Rate (DDR) SDRAM interface can run at up to 400 Mbps per data bit or, for

a common 64 bit wide interface, at 25.6 Gbps. The other similarity is in the block size

since the typical SDRAM block size is 64 bits. The backplane communication channel is

not very similar to the channel typically used in data storage applications so the criteria

used to choose a block code is not the same. Some of the block codes used in the

SDRAM storage application are Hamming codes, shortened versions of extended

Hamming codes, and Bose-Chaudhuri-Hocquengham (BCH) or Reed Solomon codes

 63

[33]. The specific codes used have error detection and correction capabilities that fall

into one of the following classes:

• Single error correcting / double error detecting;

• Single error correcting / double error detecting / single b-bit byte error

detecting;

• Single b-bit byte error correcting / double b-bit byte error detecting.

A single b-bit byte error-detecting code is one for which data is broken into b-bit

wide bytes. Any number of errors within a single byte can be detected by the code.

Similarly, a single b-bit byte error-correcting code has the ability to correct any number

of bit errors within a single b-bit byte. These types of codes are useful in memory

systems made up of multiple memory chips, each chip storing a certain number of bits at

each address location. A failure of a single chip could be detected or corrected with one

of these codes [33]. This leads to another similarity between SDRAM storage systems

and serial digital multi-gigabit communication systems and that is the data size being a

multiple of the typical 8-bit byte.

For this design project, the BCH code has been chosen. This type of code has

relatively low complexity for decoding and allows for correcting random bit errors with a

high code rate as required by the application [35]. Another characteristic of a cyclic code

such as the BCH code is that it can be shortened so that a code that matches the data

length constraints on both the MRL and the SERDES sides (see Figure 16) can be chosen

without the need to add padding bits. Other codes that were considered were the Reed

Solomon code and the simple Hamming code. The BCH code can provide some

additional error correction power over a simpler Hamming code. The Reed Solomon

 64

code provides the ability to correct burst errors and byte errors, but these types of errors

are not anticipated in the backplane communication channel and the Reed Soloman code

would therefore have more capabilities than needed.

3.6 Error Correction Code Design

The code chosen consists of a 48b/51b MRL code and a two-error correcting

primitive BCH code of order 2
6
. In this context, order is defined as the number of

elements in a finite field. A field is a set of elements and for the binary case the elements

are 1s and 0s. Some properties of fields are that it is possible to define addition,

subtraction, multiplication, and division operations that satisfy commutative, associative,

and distributive laws [36]. Such a BCH code consists of 63 total bits with 51 data bits

and 12 parity bits. The block length of 63 is obtained from 2
6
 – 1, and the minimum

distance of the code is given by (10) where t is the number of errors that can be

corrected [35]:

12min +≥ td . (10)

The minimum distance for the (63,51) BCH code is therefore 5. A single padding bit is

added to the code word to make it 64 bits, which is a multiple of 16 bits, for easy

connection to the Altera Stratix GX transceiver. This padding bit could be used as a

synchronization bit in a system design, and the implementation of the BCH code in this

project will toggle this bit between 1 and 0 for each successive code block.

The data will be encoded and decoded in parallel logic at a much slower clock

rate than the serial data transfer clock rate. The output data from the encoder is 64 bits so

 65

it can be seen that the serial data clock rate is 64 times the block encoding and decoding

logic clock rate. Since all of the data, MRL, and parity bits are available at the same time

in the slower parallel clock domain, their ordering for actual serial transmission is not

critical. The ordering has been chosen to maximize the number of chances for transitions

to occur in most data sequences by dispersing the MRL code bits and the ECC code

parity bits throughout the code word as shown in Figure 17.

Data (48 bits)

MRL Coded Data (51 bits)

MRL Coded Data + BCH Check Bits + Pad Bit (64 bits)

P

Data<47:0>

MRL<2> MRL<0>MRL<1>Data<47:24> Data<23:0>

MRL<1>MRL<2> MRL<0>C<11:9> C<2:0>C<8:6> C<5:3>Data<47:24> Data<23:0>

MSb LSb

MSb LSb

LSb

Figure 17 - Code bit order diagram.

3.6.1 MRL + BCH (63,51) Encoder Design

The encoder consists of two steps which are the 48b/51b MRL encoder block and

the BCH encoder block. Each step takes a single parallel clock cycle for a total encoding

latency of 2 parallel clock cycles. A block diagram of the encoder is shown in Figure 18.

 66

data_in_i<47:0>
63,51

BCH

Encoder

mrl_data<50:0>

pad_bit_i

reset_n_i

block_clk_i

enable_i

data_out_o<62:0>

Encoder Block

51,48

MRL

Encoder

ecc_disparity<8:0>

disparity_overflow_o

Delay

clr_run_disparity_i

data_valid_o

data_out_o<63>

Delay

Figure 18 - Encoder block diagram.

All of the inputs and outputs from the block are described in the datasheet in section 9,

which is Appendix A – ECC Block Datasheet.

The 48b/51b MRL encoder is based on [37] and contains a running disparity

register keeping track of the difference between the number of 1 bits and 0 bits that have

been output by the encoder. The running disparity is based on the 51 output bits of the

MRL encoder and on the disparity of the 12 ECC parity bits, which is fed back to the

 67

MRL encoder from the BCH encoder. The running disparity is initially set to 0 and the

MRL encoder either inverts or leaves alone the 48 input data bits and sets the other three

MRL bits based on the following rules, which are repeated for each 48-bit block of data

received by the encoder.

• If the running disparity is greater than or equal to 0

o If the disparity of the current 48 bit input data word is greater than

or equal to 0, then invert the data bits and set MRL bits 0 and 2 to

0

o Else leave the 48 bit input data word alone and set MRL bits 0 and

2 to 1

• Else if the running disparity is less than 0

o If the disparity of the current 48 bit input data word is greater than

or equal to 0, then leave the data bits alone and set MRL bits 0 and

2 to 1

o Else invert the data bits and set MRL bits 0 and 2 to 0

• Set MRL bit 1 to the inverse of MRL bit 2

The code from [37] is slightly different and works with only two MRL bits instead of

three. The maximum run length of the code from [37] is given by (11) and the

maximum running disparity is given by (12) where X is the length of the input data

word in bits [37]. Thus,

 68

25.2LengthRun Maximum += X
 (11)

and

25.1Disparity Running)25.1(+≤≤+− XX . (12)

Using the third MRL bit limits the maximum run length of the code designed here to only

51 bits (prior to FEC); however, it does so at the expense of losing the guarantee of a

bound on the running disparity. Because the ECC encoder follows the MRL encoder, and

the ECC encoder adds an additional 12 parity bits that are never inverted by the MRL

encoder, there is inherently no bound to the maximum running disparity in this design.

The MRL design provides a mechanism for limiting the maximum run length of the

output code word to the coded word length of 64 bits which meets the requirement of the

design. It also provides some ability to limit the DC spectral content of the code words

even though some data patterns could be passed through with such content. A system

requiring a limit on the DC spectral content could use the disparity overflow output bit

from the encoder block to trigger the transmission of some all 0 or all 1 data words that

would allow the encoder to bring the running disparity back down. However, this would

have to be handled outside of the encoder block in this design. The MRL block that has

been designed has the advantages of being simple to implement, it provides some control

of the DC spectral content of the data thus improving the ability to operate with AC

coupling, and it provides a limit on the maximum run length that meets the requirement

given in Table 6.

The encoder for a cyclic block code is based on dividing the polynomial

representing the input data sequence by the generator polynomial. The coefficients of the

 69

remainder of this division are the parity bits. Equation (13) shows this operation, where

u(X) is the message polynomial, n is the coded data size, k is the data size, a(X) is the

quotient of the division, g(X) is the generator polynomial, and b(X) is the remainder of

the division [35]. Thus,

)()()()(XbXgXaXuX
kn +=−

. (13)

The degree of b(X) is less than or equal to n – k – 1 which results in a polynomial with n

– k coefficients. The generator polynomial for the selected (63,51) BCH code is given in

(14) [35], where

1)(34581012 ++++++= XXXXXXXg . (14)

The remainder of the division can be computed in digital hardware using a

feedback shift register with modulo-2 addition, having taps in the positions corresponding

to the exponents of the terms in g(X). The remainder is contained in the shift register bits

after the entire 51-bit input data sequence u(X), labeled as D(50:0) in Figure 19, is shifted

in, most significant bit (MSb) first. The circuit that performs this computation of the

parity bits for the (63,51) BCH code is shown in Figure 19 [35]. The circuit in Figure 19

does not require logic 0 bits to be appended to the end of the data word to shift out the

parity bits at the end. After 51 shifts, the circuit will simply contain the 12 parity bits in

the registers b0 through b11. [35].

 70

b0 b1 b2 + b3 +

b4+b5b6b7+

b8 b9 + b10 b11 +

D(50:0) (MSb First)

Figure 19 - (63,51) BCH code encoder circuit.

A direct hardware implementation of the circuit in Figure 19 would require that shift

registers be constructed in hardware and data shifted at a clock frequency equal to the

data rate of transmission. For multi-gigabit data transmission this is not possible in an

FPGA. However, if all of the input data bits are available at once then the output of each

memory cell within the encoder shown in Figure 19 can be computed as a modulo-2 sum

of certain input data bits keeping in mind that every time the same input data bit gets

added to itself, the sum is zero in modulo-2 addition. The expression for each of the 12

parity bits, or memory cell outputs for the encoder shown in Figure 19, was calculated

symbolically using Mathcad. The resulting expressions for b8 and b9 each contained the

largest number of modulo-2 additions at 31, and the resulting expression for b8 is shown

in (15), where

 71

382026144741304638

40451119171028332749

31439241232351842158

uuuuuuuuuuu

uuuuuuuuuu

uuuuuuuuuub

+++++++++++

++++++++++

+++++++++=

.

 (15)

An equation of this form could be determined and implemented directly in hardware for

each of the parity bits. VHDL provides a mechanism for generating combinational logic

for multiple simultaneous shifts of a shift register such as this using a FOR GENERATE

statement, and then the logic synthesis tool will automatically create the required

equations such as in (15), so for purposes of implementation there is no need to

determine these analytically.

3.6.2 General BCH Decoding Discussion

Encoding of the binary BCH codes is straightforward as has been described.

Decoding is not as straightforward and there are several methods available for decoding

binary BCH codes. Most of the algorithms involve three main steps as follows [35]:

• Compute the syndromes;

• Determine the error-location polynomial;

• Find the roots of the error-location polynomial as the error locations.

The syndrome computation is similar to the encoding process and is fairly

straightforward. The syndrome computation is discussed in more detail in section 3.6.3.

Determining the error-location polynomial coefficients is not as straightforward and there

are at least three methods for doing so. The first is Peterson’s direct-solution decoding

algorithm which involves the direct solution of the equations resulting from Newton’s

identities [38]. The second is the Berlekamp algorithm which iteratively solves for the

 72

error-location polynomial coefficients [38]. The third method is Euclid’s algorithm

which recursively finds the greatest common divisor between two polynomials [38].

The Peterson direct-solution method is the simplest to implement for small values

of t, but its complexity grows with the square of t, the number of errors that can be

corrected, while the Berlekamp algorithm’s complexity grows linearly with t [38]. The

Berlekamp algorithm is the most efficient in general, but the difference between it and

the Euclidean algorithm is not as great as between it and the Peterson direct-solution

method [38]. The Peterson method is reasonable for decoders that correct up to 6 or 7

errors, while the Berlekamp and Euclidean algorithms are reasonable for decoders that

correct many errors [38]. The Berlekamp algorithm is usually preferred to the Peterson

method for decoders correcting more than 3 or 4 errors [36]. Another algorithm for

decoding binary BCH codes uses frequency domain decoding which does not seem to be

very straightforward [38]. The Peterson direct-solution method has been chosen in this

design because of its efficiency and ease of implementation for a small t=2 error

correcting code.

The error search is done by finding the roots of the error-location polynomial.

The degree of the error-location polynomial is equal to the number of errors that the code

can correct. A direct solution approach can be taken for BCH codes that correct 1 or 2

errors by using Galois field arithmetic to directly solve for the roots of the error-location

polynomial [36]. The other method that is commonly used is to try all the elements in the

Galois field of the code in the error-location polynomial and see if the result of the

polynomial is 0. If it is, then that element must be a root. This systematic approach is

called a Chien search [36]. The direct solution approach would work for the code of this

 73

design, but the Chien search is straightforward, easy to implement, and can be easily

extended to codes in future designs with the ability to correct more than 2 errors.

BCH codes have the ability to correct more than t errors for certain error patterns.

All of the decoding algorithms discussed, and the one implemented in this design, correct

t errors. According to [36], complete decoding algorithms for all double- and some

triple-error correcting BCH codes are available. The BCH code in this design will

correct all two-error patterns and detect some error patterns of greater than two errors.

3.6.3 MRL + BCH (63,51) Decoder Design

The decoder consists of two main stages which are the BCH decoder block and

the 48b/51b MRL decoder block. The MRL decoder takes a single clock cycle. The

BCH decoder has three stages, the syndrome computation, the error-location polynomial

determination, and the error-location computation each taking 1 clock cycle for a total of

3 clock cycles. The total decoding latency is 4 clock cycles. A block diagram of the

decoder is shown in Figure 20. All of the inputs and outputs from the block are described

in the datasheet in section 9, which is Appendix A – ECC Block Datasheet.

The syndromes Si are computed by dividing the received message polynomial by

the minimal polynomial φi(X) evaluated at α
i
 [35]. A Galois field contains a set of

minimal polynomials, one for every element in the field, where each minimal polynomial

is the lowest degree polynomial that the evaluation of at that element results in the 0

element [36]. An equation describing this operation where r(X) is the received message

polynomial, ai(X) is the quotient of the division, and bi(X) is the remainder of the division

is given in (16) [35], where

 74

)()()()(XbXXaXr iii += φ . (16)

For a BCH code there are 2t syndromes where t is the number of errors that can be

corrected by the code. For the (63,51) BCH code, there are 4 syndromes [35].

Syndrome

Computation

Error-Location

Polynomial

Determination

rcv_word_2<50:0>

data_in_i<62:0>

Error-Location

Computation

s1<5:0>

s2<5:0>

rcv_word_3<50:0>

sigma1<5:0>

sigma2<5:0>

num_errs<1:0>

corrected_word<50:0> 48b / 51b

MRL

Decoder

data_out_o<47:0>

error_cnt_o<1:0>

block_clk_i

pad_bit_o

reset_n_i

enable_i

Decoder Block

s3<5:0>

mrl_error_o

Delay
data_in_i<63>

data_valid_o

Delay

Figure 20 - Decoder block diagram.

 75

For Galois field GF(2
6
), the minimal polynomials of α, α

2
, and α

4
 are the same.

The minimal polynomials of α, α
2
, α

4
, and α

3
 are listed in (17) [35]. Thus,

6

4,2,1 1)(XXX ++=φ

and

642

3 1)(XXXXX ++++=φ .

(17)

The remainder of the division, bi(X), can be computed using a feedback shift register

circuit in digital hardware. Two such circuits are needed since there are two different

minimal polynomials. Since both minimal polynomials are degree 6, the remainders are

both degree 5 and are given by (18). The coefficients in this equation, b0 through b5

and B0 through B5, are functions of the received word divided by the corresponding

minimal polynomial [35]. Thus,

5432

4,2,1 543210)(XbXbXbXbXbbXb +++++=

and

5432

3 543210)(XBXBXBXBXBBXb +++++= .

(18)

The syndromes are computed as shown in (19) where α
i
 is an element in GF(2

6
) [35].

Thus,

 76

)(4,2,11 αbS = ,

)(2

4,2,12 αbS = ,

)(3

33 αbS = ,

and

)(4

4,2,14 αbS = .

(19)

Expanding the equations in (19) results in the 6-bit syndromes computed from the

coefficients of the remainders of the two polynomial divisions by φ1,2,4(X) and φ3(X) and

the result is shown in (20), where

5432

1 543210 ααααα bbbbbbS +++++= ,

5432

2 5)52(4)41(3)30(ααααα bbbbbbbbbS ++++++++= ,

5432

3 53)531(42)420(ααααα BBBBBBBBBBS +++++++++= ,

and

5432

4 5)541()52()532(4)430(ααααα bbbbbbbbbbbbbS ++++++++++++= .

(20)

One interesting thing to note is that based on the way these are calculated, S2 is equal to

S1 squared and S4 is equal to S2 squared. For the Peterson direct solution method for a 2

error correcting binary BCH code, only the odd syndromes are required to find the error-

location polynomial [36]. However, as will be seen later, S1 squared will be required in

the error-location polynomial stage, so to avoid having to perform this multiplication step

in the error-location polynomial stage, S2 will be computed in the syndrome computation

stage. A block diagram of the syndrome computation circuit is shown in Figure 21. The

 77

shift register is implemented to shift the entire 63 bit received code word through on a

single parallel data clock cycle and the addition blocks are also performed on that same

clock cycle [35].

b0 b1 b2 b3 b4 b5++
rcv_word1<62:0>

(MSb First)

s1<5:0>

+

+

+

s2<5:0>

0
1
2
3
4
5

0

1

2

3

4

5

B0 B1 B2 B3 B4 B5++

+

+
s3<5:0>

0

1
2

3

4
5

+ +

Figure 21 - Syndrome computation circuit.

The next step of the BCH decoder process is the computation of the error-location

polynomial. The error-location polynomial in general form for any BCH code is given in

(21) [35], where

v

v XXXX σσσσσ ++++= ...)(2

210 . (21)

 78

The values of the coefficients σi are elements of the Galois field from which the BCH

code was formed and the roots of (21) are the bit position locations of the errors in the

received code word. Equation (22) shows the error-location polynomial for the (63,51)

BCH code and the values of the coefficients solved using Peterson’s direct-solution

method [36]. Thus,

2

211)(XXX σσσ ++= ,

 11 S=σ ,

and

2

1

32

1

1

3

2 S
S

S
S

S

S
+=+=σ .

(22)

The division in (22) can be performed by inverting S1 and multiplying it by S3. The

inversion is performed by a lookup table built from combinational logic using the

relationship in (23) for inversion in GF(2
6
). For the purposes of this design, inversion of

the 0 element will result in the 0 element even though it is technically undefined [36].

Thus,

 undefined=−10 ,

 00 αα =− ,

and

1 63 ≥= −−
i

ii αα .

(23)

The addition is defined as bitwise modulo-2 addition. The multiplication is defined by

(24) and is performed using the circuit in Figure 22 [36]. The circuit is created using

 79

combinational logic to perform all 6 shifts on one clock cycle so that it completes within

a single clock cycle in this design. Thus,

 00 =⋅ iα ,

jiji += ααα ,

and

012 αα =−m

where

22,0 −≤≤ m
ji .

(24)

Figure 22 - GF(2
6
) multiplier circuit.

 80

A block diagram for the whole error-location polynomial computation step is shown in

Figure 23. One last thing to note about this step is that the values of the error-location

polynomial coefficients indicate how many errors are in the received word by the

following rules [36]:

• If S1 = 0 and S3 = 0 then there are no errors;

• Else if S1 = 0 and S3 ≠ 0 then there are 3 or more errors;

• Else if S1 ≠ 0 and σ2 = 0 then there is 1 error;

• Else there are 2 or more errors.

These rules are evaluated in this stage and the result passed to the error search stage for

use in determining how many errors have occurred.

Figure 23 - Error-location polynomial computation circuit.

 81

The final stage of the BCH decoder is the error-location search. This search is

performed by trying each power of α successively in the error-location polynomial as

demonstrated in (25). This algorithm is referred to as a Chien search [35]. Therefore,

 63 to1 iFor = ,

 () ()2

211 iii ασασασ ⋅+⋅+= .

 () 0 If =iασ , then an error has occurred in bit location (63-i).

() 0 If ≠iασ , then an error has not occurred in bit location (63-i).

(25)

The circuit that implements this is shown in Figure 24.

The final stage of the decoder design is the (51,48) MRL decoder. The decoding

operation is simple and is based on the following rules:

• If MRL<2:0> = 010 then invert the 48 data bits;

• Else if MRL<2:0> = 101 then leave the 48 data bits alone;

• Else set the mrl_error_o signal to a 1 to indicate a decoding error.

 82

Figure 24 - Error-search circuit.

 83

4 Bit-Error-Rate-Test Functional Block

The primary measure of performance of a digital communication system is the bit

error rate. Bit error rate (BER) is defined by (26) [35], where

Number of Bit Errors

Total Number of Bits
BER = . (26)

When comparing bit error rates between systems that include error correction coding and

uncoded systems, it is necessary to make the comparison based on the BER for the

information bits rather than the BER for transmitted bits which, for the coded system,

will include redundant bits.

There is a lot of commercially availably test equipment for measuring bit error

rate and characterizing serial digital multi-gigabit communication systems. Some

vendors that have such equipment are Agilent Technologies, Synthesys Research, and

Anritsu. The product offerings contain a lot of advanced features such as bit error

location tracking, eye diagram creation, and jitter measurement [39]. The main drawback

of such test equipment is that it is very expensive. An alternative to such expensive test

equipment is to have built-in self test designed into the digital hardware in a serial digital

multi-gigabit communication system. A field programmable gate array (FPGA) provides

a good platform for built-in self test in these systems because it is configurable and easy

to integrate such a self test block into the data path at any desired location to test not only

the physical performance of the link but also to test coding and higher layer protocol

blocks.

 84

The development of the bit-error-rate-test functional block has been broken into a

few steps. The first was to investigate how bit error rate measurements are made. The

next was to determine what types of data patterns the block should support and identify

which data patterns would be most useful in certain types of measurements such as jitter.

After selection of appropriate data patterns, the ability to implement those patterns at

multi-gigabit data rates was evaluated and then the block was designed and implemented.

4.1 Bit-Error-Rate-Test Measurement Background

Bit errors in a serial digital multi-gigabit communication system occur as the

result of random Gaussian distributed noise. It is therefore impossible to predict exactly

when they will occur because the errors will have a random distribution. Statistical

methods are required to measure bit error rate. Three methods have been investigated for

possible use in this project. The first method provides a confidence level for the true bit

error rate being within some stated percent error of the bit error rate measurement based

on the number of bit errors that were counted in that measurement. The second method

provides a confidence level for the true bit error rate being better than a given bit error

rate if a system is measured without any bit errors for a given amount of time. The third

method provides an estimate and confidence level for the range of the true bit error rate

based on making multiple measurements.

A binomial distribution can be used to describe the probability of counting a

certain number of bit errors in a certain number of bits. The binomial distribution applies

when the following conditions are met [40]:

 85

• Bit errors are random;

• There are two outcomes, either a bit is correct or in error;

• All bits have the same probability of being in error;

• The number of bits measured must be the same regardless of the outcome of each

bit measurement.

The first three conditions are met based on the jitter model of bit error rate described in

section 3.4.4 and the last condition is a requirement of the measurement.

For a binomial distribution with a very large value of b (the number of bits

measured) and with a very small value of p (the probability of an event such as a bit

error), the Poisson distribution is a good approximation of the binomial distribution [40].

Some investigation using Mathcad showed that for a bit error rate of 10
-12

, the binomial

distribution could not be computed for very large values of b, the number of bits over

which the distribution applies, to get enough errors to be statistically significant. The

Poisson distribution did not suffer this problem, so it has been used in this analysis. For

bit error rate applications, the Poisson distribution has a discrete probability density

function that describes the probability of counting a certain number of bit errors in a

certain number of bits. The distribution is given by (27) [40], where

bp ×=λ

and

!
)Pr(

)(

r

e
rR

r λλ −

== .

(27)

 86

In (27), λ is a defined parameter of the Poisson process, p is the probability of a bit

error, r is the number of bit errors counted when b bits are measured, and Pr(R=r) is the

probability that the number of bit errors counted, R, will be equal to r when b bits are

measured. The mean and standard deviation for the Poisson distribution are given in

(28) [40], where

λ=mean

and

 λσ = .

(28)

Assuming that the measured number of errors is Poisson distributed, an inference

can be made about the accuracy of a given measurement based on the number of errors

that were measured. This is accomplished using (29) [40], where

∑
⋅+

⋅−=

==
RerrR

RerrRi

iRC)Pr(. (29)

In (29), C is the confidence that the measured number of bit errors, R, is within the

fractional error +/- err of the number of bit errors that would be expected based on the

actual average bit error rate. For example, a particular measured bit error rate might be

stated as being within +/- 5% of the actual bit error rate, with 90% confidence. One thing

to note is that the value of err must either be chosen so that the limits of the summation in

(29) are integers, or those limits must be rounded. Any rounding would introduce some

error. For a data rate of 3.125 Gbps and a bit error rate of 10
-12

 some values of C, err,

 87

and test times required to make the measurements are shown for different values of R in

Table 7.

Table 7 - Measurement accuracy versus number of bit errors measured, and corresponding test

times, for 3.125 Gbps data rate and measured BER of 10
-12

.

R (number of errors

that must be

measured)

Err (+/- error

percentage between

the measured and true

bit error rates)

C (confidence that

the measured bit

error rate is within

+/- Err % of being

accurate)

Average test time

required to make the

test (hr)

10 10% 36.4% 0.889

10 30% 73.4% 0.889

50 10% 56.3% 4.44

50 20% 86.3% 4.44

100 10% 70.7% 8.89

100 20% 96.0% 8.89

400 5% 69.5% 35.56

400 10% 95.7% 35.56

1000 5% 89.0% 88.89

1000 10% 99.9% 88.89

Even for high data rates, the test times get quite long for a reasonable amount of

confidence in the measurement for a bit error rate of 10
-12

, as shown in Table 7. If the

system was actually operating with some noise margin above and beyond that required

for 10
-12

 operation, the true bit error rate would be even less, and test times to measure

this lower bit error rate at a particular confidence level could greatly increase. In this

situation, test times to merely demonstrate that the bit error rate is lower than 10
-12

 (rather

than to measure the lower bit error rate) would not in general be greater than the test

times needed for the system that operates without the noise margin. Bit error rate testing

to demonstrate compliance with a stated limit is discussed in the next paragraph.

The second method provides a way to determine that the bit error rate is below

some specified threshold with a certain amount of confidence. This method provides an

improvement on test times, but does not allow exact measurement of the bit error rate.

 88

This is usually sufficient in real designs since most design requirements are that the

system operate at a bit error rate that does not exceed some level. For low bit error rate

systems, this method is often the best choice. The confidence that a system is operating

below some bit error rate threshold is given by (30) [41], where

bfBER

C
T

×

−−
=

)1ln(
. (30)

In (30), T is the time that the test must be conducted without any bit errors, C is the

confidence that the true bit error rate is below a specified bit error rate BER, and fb is the

data rate at which the system is operating. Table 8 shows some test times required for

different confidence levels and different values of specified bit error rate for a data rate of

3.125 Gbps.

Table 8 – Test time versus specified bit error rate threshold and confidence, at 3.125 Gbps.

BER (maximum bit

error rate)

C (confidence that the

true bit error rate is

below the maximum bit

error rate)

T (time required of bit

error free measurement

given C and BER) (hr)

10
-12

 70% 0.107

10
-12

 95% 0.266

10
-12

 99.9% 0.614

10
-15

 70% 107.0

10
-15

 95% 266.3

10
-15

 99.9% 614.0

10
-17

 70% 10702.0

10
-17

 95% 26628.7

10
-17

 99.9% 61402.3

From Table 8, test times for determining if a bit error rate is below 10
-12

 are vastly

improved relative to those in Table 7 for measuring the bit error rate. Test times for

determining if the bit error rate is below 10
-15

 span several days, which might be plausible

 89

for some testing applications, but test times for determining if the bit error rate is below

10
-17

 are greater than one year and would therefore be prohibitive.

The third method uses multiple tests of the same duration and assumes that the

results are randomly distributed around the true bit error rate. Using statistical methods, a

range of the bit error rate can be determined with a certain confidence interval. Ideally, a

very large number of tests would be conducted and the normal distribution would apply

to the results. Since the time required to count even small numbers of errors can be quite

large for very low bit error rates, it is not usually practical to conduct a very large number

of tests. Another factor is that the standard deviation of the bit error rate measurements

will not usually be known, especially for a newly designed system. For cases where

statistical inferences are made based on a limited number of tests and also on a standard

deviation and mean estimated from a set of sample tests, the Student t-distribution

applies. This distribution takes into account the uncertainty of the standard deviation

calculated from the test samples [40].

When using the t-distribution, a number of tests are conducted for a fixed duration

and the number of errors is counted for each test. The mean and standard deviation of the

number of errors counted in the tests is computed with (31) and (32) respectively [40],

where

n

x

x

n

i

i∑
== 1

(31)

and

 90

()

1

1

2

−

−

=
∑

=

n

xx

s

n

i

i

.

(32)

In (31) and (32), the xi values are the numbers of errors counted in the tests and n is the

number of tests conducted. A value then is found for the t-distribution from a computed

table or computer program at a certain confidence level and a range for the bit error rate,

based on these measurements, is then calculated using (33) [40], where

n

s
txBER

n

s
tx ⋅+≤≤⋅− 11 . (33)

In (33), t1 is the value of the t-distribution for the desired confidence interval, x is the

mean of the error count samples, and s is the standard deviation of the error count

samples.

This method allows for shorter test times per test than the first method, but since

multiple tests are required the actual test time will be similar to the first method. There

may be some instances where this method has advantages, but generally it is just another

way of approaching the determination of bit error rates from measurements.

4.2 Bit-Error-Rate-Test Data Patterns

The sources used to find appropriate bit-error-rate-test (BERT) data patterns to

use in serial digital multi-gigabit communication systems were commercially available

test equipment and industry recognized standards and recommendations. All test

equipment investigated provided for relatively short programmable word patterns and

 91

relatively long pseudorandom bit sequences, both of which are repeated periodically. An

example of a BERT for serial digital multi gigabit communication systems is the

BERTScope 7500A from Synthesys Research [39]. The datasheets for the test equipment

specify the details of some specific pseudorandom bit sequences (PRBSs), and those

sequences are also specified in [42].

The patterns that have been chosen to be implemented in this design are listed in

Table 9 with some details about each pattern.

Table 9 - Data patterns selected for BERT block design.

Pattern Length (bits) Length in

Time for

3.125 Gbps

Generator

Polynomial for

LFSR

Max 0s

Run

(bits)

Max 1s

Run

(bits)

Source

Programmable Word 8 – 64 bits 2.56 ns –

20.48 ns

NA 64 64 NA

2
11

 – 1 PRBS 2047 655.04 ns X
11

 + X
9
 + 1 10 11 [42]

2
31

 – 1 PRBS 2,147,483,647 687.2 ms X
31

 + X
28

 + 1 30 31 [42]

The PRBS patterns are generated using linear feedback shift registers (LFSRs) with the

feedback taps in the locations corresponding to the exponents on the terms in the

generator polynomial.

4.3 Bit-Error-Rate-Test Block Design

The bit-error-rate-test block consists of two separate blocks, the pattern generator

and the receiver. The pattern generator generates the pattern and the receiver

synchronizes to the pattern and then counts bit errors in the received data after

synchronization.

 92

4.3.1 Bit-Error-Rate-Test Pattern Generator

The pattern generator block can generate any of the three selected patterns

identified in Table 9. A functional block diagram for the pattern generator is shown in

Figure 25. The inputs and outputs are described in the datasheet in section 10, which is

Appendix B – BERT Block Datasheet.

2
11
– 1 PRBS

LFSR

2
31
– 1 PRBS

LFSR

Data Word

Pattern

Generator

MUX
Selectable

Inverter

Output

Register

word_clk_i

reset_n_i

prbs_2_11_seed_i<x:0>

load_2_11_seed_i

prbs_2_31_seed_i<x:0>

load_2_31_seed_i

data_word_i<x:0>

load_word_i

invert_data_i

pattern_select_i<1:0>

bert_data_o<x:0>

prbs_2_11_word<x:0>

pattern_word<x:0>prbs_2_31_word<x:0>

data_word_reg<x:0>

bert_word<x:0>

Bit-Error-Rate-Test Pattern Generator Block

X = Data Word Size - 1

Select and

Enable

Logic

prbs_2_31_enable

prbs_2_11_enable

enable_i

Figure 25 - BERT pattern generator block diagram.

 93

The data word size of the pattern generator is configurable to values between 8 bits and

64 bits. The data word pattern generator simply captures a data word x+1 bits wide into a

register, where x is a parameter used in the pattern generator shown in Figure 25, and

then sends that word out on every clock cycle of word_clk_i. It is possible for the data

word to be static or it can change on every clock cycle of word_clk_i in which case a

custom user defined data pattern could be generated.

The two PRBS data pattern generators work in a very similar fashion. Each is

constructed using a LFSR as shown in Figure 26 and Figure 27 [42].

Figure 26 - 2
11

 - 1 PRBS LFSR block diagram, for P(X) = X
11

 + X
9
 + 1.

Figure 27 - 2
31

 - 1 PRBS LFSR block diagram, for P(X) = X
31

 + X
28

 + 1.

Since the pattern generator block must operate at the word clock rate and not at the bit

clock rate, the hardware implementation is not a simple LFSR as shown. In hardware the

LFSR for each pattern must be simultaneously shifted x+1 times for each clock cycle of

the word clock. This is accomplished with combinational logic. The hardware must

compute the next bit value for each register in the LFSR after x+1 shifts, and all x+1 of

the output bits within a single clock cycle of the word clock. For the 2
11

 – 1 generator,

the worst case equation for each of these calculations was computed symbolically for a

word size of 64 bits using Mathcad and is given in (34), where

 94

8107931520 bbbbbbbbb next ⊕⊕⊕⊕⊕⊕⊕=

and

 810315_ 38 bbbbboutdata ⊕⊕⊕⊕= .

(34)

For the 2
31

 – 1 generator, the worst case equation for each of these calculations was

computed similarly and is given in (35), where

202623290 bbbbb next ⊕⊕⊕=

and

 27302_ 59 bbboutdata ⊕⊕= .

(35)

The 2
11

 – 1 pattern generator actually requires more combinational logic for each bit, but

only contains 11 shift register bits versus 31 for the 2
31

 – 1 PRBS generator. For

hardware implementation in VHDL it is not required to know the equations for all of the

next shift register bits and output data bits because a for loop can be used in which the

synthesis tools will automatically convert into the correct equations.

4.3.2 Bit-Error-Rate-Test Receiver

The receiver block can synchronize to and count errors in any of the three selected

patterns. A functional block diagram for the receiver is shown in Figure 28. The inputs

and outputs are described in the datasheet in section 10, which is Appendix B – BERT

Block Datasheet.

 95

MUX

Selectable

Inverter

word_clk_i

reset_n_i

bert_data_i<x:0>

data_word_i<x:0>

invert_data_i

pattern_select_i<1:0>

enable_i

prbs_2_11_err_cnt<6:0>

Bit-Error-Rate-Test Receiver Block

X = Data word size - 1

2
11
– 1

PRBS

LFSRInput

Buffer

2
31
– 1

PRBS

LFSR

bert_data<x:0>

buf_data<6x+5:0>

<4x+3:4x+3-10>

<4x+3:4x+3-30>

Synchronizing and

BERT Control

Word

Register

Compare

Compare

p
rb
s
_
2
_
1
1
<
x
:0
>

p
rb
s
_
2
_
3
1
<
x
:0
>

<6x+5:5x+5>

prbs_2_11_load

prbs_2_11_enable

prbs_2_31_load

prbs_2_31_enable

word_index<6:0>

word_reg_enable

Error

Count

Register

Pipeline +

Compare

<2x+1:0>

<6x+5:5x+5>

prbs_2_31_err_cnt<6:0>

word_err_cnt<6:0>

Receive

Block

Count

Register

max_word_count_i<z:0>

err_cnt<6:0>

err_cnt_o<y:0>

word_count_o<z:0>

test_done_o

Y = Error Count Register Size - 1
Z = Block Count Register Size - 1

test_en

reset_n_i

sync_status_o

resync_i

pattern_select<1:0>

c
o
m
p
a
re
_
w
o
rd
<
x
:0
>

sync_loss_cnt_o<w:0>

W = Sync Loss Count Register Size - 1

err_cnt_overflow_o

run_forever_i

Figure 28 - BERT receiver block diagram.

The BERT receiver block consists of several sub-blocks including the input

buffer, the pattern generators, the error comparators and counter, the synchronization and

 96

control block and the output registers. The basic process flow of the BERT receiver

block is shown in Figure 29.

Figure 29 - BERT receiver process flow diagram.

The first stage of the receiver is the input buffer stage. There are two constraints on the

input buffer size. For the programmable word pattern, the pattern could start anywhere

within an input data word and continue for x+1 bits. In order to search for and be assured

of finding the data word in the buffer at least two data words must be in the buffer. For

the PRBS patterns, the pattern generators must be seeded with the received data and then

shifted x+1 times on a single clock cycle of the word clock, comparing the output data

from the LFSRs to the received data. The 2
31

 – 1 PRBS pattern has 31 shift register

 97

stages so it requires 31 bits to seed it. Therefore, the second requirement is that the

length of the buffer be at least 31 bits long. Setting the buffer size to 4 data words and

limiting the size of a data word to between 8 bits and 64 bits accomplishes both of these

requirements. In the design, two additional stages were added to the buffer because it

takes one clock cycle to load the LFSR and one clock cycle to perform the first shift of

the LFSR. So in order to compare the output of the LFSR with the received data, the data

must be saved for two additional clock cycles, thus, the two additional buffer stages. So

the buffer in the design contains 6 word stages for a total of 48 registers for an 8-bit data

word and 384 registers for a 64-bit data word. For an 8-bit data word there is very little

wasted space in the buffer. However, for anything larger than a 31-bit data word, only

one buffer stage is required for seeding the LFSRs and in that case three of the buffer

stages would be wasted. The number of wasted registers in these cases would be at most

192 for a 64-bit word size. The design could be optimized but, 6 buffer stages are used

regardless of the word size for simplicity of implementation.

For the PRBS patterns, the receiver block contains the same pattern generator

block as in the BERT pattern generator block described in section 4.3.1. Once

synchronization occurs, the pattern generators can be shifted x+1 times per clock cycle of

the word clock, to generate the expected receive data for comparison to the received data.

For the programmable word pattern, the receiver block contains a register that captures

the expected data word on the input signal data_word_i.

The synchronization and control block is a state machine that controls all of the

enables and other control signals inside the BERT receiver. For the PRBS patterns, the

synchronization process involves seeding the appropriate PRBS pattern generator and

 98

then counting bit errors over a fixed interval. If the bit error rate is less than a threshold,

then synchronization has occurred and the block allows the error counter and word

counter to start counting. For the programmable data word pattern, the synchronization

process involves choosing a start index in the input data buffer and comparing the bits in

the input data buffer starting at that index and continuing for x+1 bits after that to the

expected data word. If the bit error rate is less than a threshold, then synchronization has

occurred and the block allows the error counter and word counter to start counting. If the

bit error rate is greater than the threshold, then synchronization has not occurred and the

process will be repeated with the starting index incremented by 1. The starting index will

be incremented over the range of 0 to x and then wrapped back to 0. For both types of

patterns, the synchronization and control block continues monitoring the bit error rate of

the received data over fixed intervals and if the bit error rate exceeds a certain threshold,

then synchronization is lost and the block tries to resynchronize. If synchronization is

lost, a counter is incremented to keep track of the number of times synchronization has

been lost and it is available as an output on the signal sync_loss_cnt_o. The error counter

and word counter are disabled during resynchronization.

The block is designed so that the fixed interval and the bit error rate thresholds for

synchronization and losing synchronization are programmable. Normally the bit error

rate threshold for synchronization will be set much lower than the bit error rate threshold

for loss of synchronization to allow for some hysteresis [43]. The state machine for the

synchronization and control block is shown in Figure 30.

 99

IDLE

PRBS_LOA

D_SEED

SET_WORD

_INDEX

PRBS_SYN

C

All state transitions require enable_i = 1

If enable_i = 0, then the state machine

always remains in the current state, but the

test_en signal is deasserted

PRBS_SYNC

_CRITERIA

PRBS_TEST

PRBS_SYNC

_LOSS_CRIT

ERIA

TEST_DONE

WORD_SYN

C

WORD_SYN

C_CRITERIA

WORD_TEST

WORD_SYN

C_LOSS_CRI

TERIA

pattern_select = 01 or 10 pattern_select_i = 00

sync_count =

SYNC_WORDS

else

sync_acc_err_cnt >

SYNC_ERR_CNT

else

sync_count =

SYNC_WORDS

sync_acc_err_cnt >

UNSYNC_ERR_CNT

else

test_done_o = 1
else

sync_count =

SYNC_WORDS

else

Sync_acc_err_cnt >

SYNC_ERR_CNT

else

sync_count =

SYNC_WORDS

else

sync_acc_err_cnt >

UNSYNC_ERR_CNT

All states except for TEST_DONE will

transition immediately back to the IDLE

state if the resync_i input signal is asserted

pattern_select_i = 11

else

LATCH_PATT

ERN_SELECT

else

PRBS_SHIF

T

REG_BUF_

WORD

test_done_o = 1

wait_count = 3
elsewait_count = 3

else

Figure 30 - Synchronization and BERT control block state machine.

Once synchronization has occurred, the synchronization and control block enables

the error counting and word counting. The multiplexer (mux) is selected for the correct

error count and an accumulator adds the error count on each clock cycle to the

accumulated error count with the new value being captured into the error count register

 100

on each clock cycle. The word counter is incremented by one on every clock cycle. The

word counter block also has a comparator in it that compares the counter value with an

input value specifying the number of words for which the test should continue. Once the

word counter reaches that number, the test is complete and the synchronization and

control register will remain in the idle state until the block is reset. The block can also be

put into an open ended test mode that does not stop after the maximum word count is

reached by setting the run_forever_i input signal to a logic high.

 101

5 Implementation and Integration Results

This section describes the hardware design that integrates the bit-error-rate-test

(BERT) block and the error correction code (ECC) block together with a multi-gigabit

serial transceiver in the Altera Stratix GX device. The implementation is specific to the

Altera Stratix GX development board. Some results from testing of the integrated blocks

are also presented.

5.1 Implementation Design

The design integrates the ECC and BERT blocks described in sections 3 and 4

with the serial transceiver in the Altera Stratix GX device. In order to compare bit error

rates for coded versus uncoded data, two designs were actually implemented. One

included a block to perform both ECC and BERT functions and the other only included

the BERT block. This section describes the implementation of the version with the ECC

and BERT block in detail, but the BERT-only version is very similar. A top level block

diagram of the design is shown in Figure 31. The design implements both transmit and

receive paths and the intent is that they will be connected in an external loopback

configuration.

There are several sub blocks in this design. The major blocks are the BERT +

ECC transmit block and the BERT + ECC receiver block and those will be described in

more detail. The Altera Stratix GX transceiver block is contained within the Altera

Stratix GX FPGA. This design configures the block in x16 data width mode and for a

serial data rate of 3.125 Gbps. The reference clock provided to this block is 156.25 MHz

 102

on the xtal1_sgx_i signal input to the FPGA from the development board. The block is

configured to multiply this clock to the data rate with its internal PLL.

LED Decode

Logic

gx_led<7:0>_o

gx_dig1<a,b,c,d,e,f,g,dp>_o

gx_dig2<a,b,c,d,e,f,g,dp>_o

Test Control

Logic

xcvr_clk_i

enable_i

bert_pattern_i<1:0>

xmit_data_valid_o

test_done_o
err_cnt_o<x:0>

sync_status_o

bit_slip_o

sync_detect_o

rx_digital

_reset(0)

inclk(0)

coreclk_out(0)

rx_out<15:0>

tx_out(0)

Altera Stratix GX

Transceiver Block

tx_digital

_reset(0)

rx_in(0)

rx_bitslip(0)

tx_in<15:0>

gx_pb_dev_clr_n_i

xtal1_sgx_i

gx_pb_dev_clr

gx_dip<7:0>_i

disparity_overflow

bert_pattern<1:0>

test_en

rcv_enable

reset_n_i

block_clk_i

transmit_data_o<15:0>

disparity_overflow_o

BERT + ECC Transmit Block

receive_data_i

xmit_data<15:0>

reset_n_i

receive_data_i<15:0>

xcvr_clk_i

enable_i

bert_pattern_i<1:0>

block_clk_i

word_cnt_o<y:0>
sync_loss_cnt_o<z:0>

BERT + ECC Receiver Block

rcv_data<15:0>

Altera Fast

PLL Block

inclk0
xcvr_out_clk

pllena

1

areset

c1

c0

locked

word_clk_pll_lock

ECC / BERT Top Level Interconnection Block

test_duration<y:0>

bit_slip

sync_detect

sync_status

test_done
err_cnt_o<x:0>

x = ERR_CNT_SIZE - 1

y = WORD_CNT_SIZE - 1

z = SYNC_LOSS_CNT_SIZE - 1

test_duration<y:0>

data_word_i<47:0>

data_word<47:0>

xmit_data_valid_o

xmit_data_valid

err_cnt_overflow_o
err_cnt_overflow

rx_cruclk(0)

c2
rx_cruclk

xcvr_clk

block_clk

tx_coreclk(0)

xcvr_rx_clk_i

rx_clkout(0)

xcvr_rx_clk

dec_mrl_err_o
dec_err_cnt_o<1:0>

Figure 31 - BERT and ECC integration design top level block diagram.

 103

In addition to the reference clock there are several other clocks used in the design.

A divide-by-16 version of the data rate clock inside the transceiver is provided as an

output as coreclk_out (195.3125 MHz). The transceiver also provides a divide-by-16

version of the clock recovered from received data stream as an output on rx_clkout

(195.3125 MHz). The transceiver is configured such that the 16 bit receive data is phase

aligned with this clock.

The coreclk_out is connected to a PLL in the stratix GX device to generate all the

other clocks needed in the design. The first clock, rx_cruclk, is divided by 5/4 to match

the reference clock frequency (156.25 MHz) and this is connected to the transceiver as

the clock used to train the receive PLL. To operate at 3.125 Gbps, the transceiver

requires a separate reference clock input, so that is why the xtal1_sgx_i clock couldn’t be

used. The next two clocks, block_clk and xcvr_clk are phase aligned with each other.

The block_clk is a slower parallel clock for the encoder and decoder and for the BERT

generator and receiver, and is a divide-by-64 version of the data rate clock (48.828125

MHz). The xcvr_clk matches the parallel data rate coming out of the transceiver and is a

divide-by-16 version of the data rate clock (195.3125 MHz). The transceiver clock

xcvr_clk is used to clock a multiplexer circuit to go from the x64 data width to the x16

data width in the transmit direction, and a demultiplexer circuit to go from the x16 data

width to the x64 data width in the receive direction.

The BERT and ECC transmit block connects the BERT pattern generator to the

MRL and ECC encoder and also performs multiplexing from x64 data width to x16 data

width for connection to the transceiver. This block also contains some logic to generate a

 104

signal alternating between 0 and 1 to use as the pad bit. The transmit block design is

shown in Figure 32.

Figure 32 - ECC and BERT transmit block diagram.

The BERT and ECC receive block is a bit more complicated than the transmit

block. The incoming data must be demultiplexed and phase aligned with the divide-by-

64 block_clk, then decoded, and finally synchronized within the BERT receiver and have

errors counted. An ECC block synchronization must also be performed. A block

diagram of the BERT and ECC receive block is shown in Figure 33.

 105

Figure 33 - BERT and ECC receive block diagram.

For the first step in the receive data flow, the incoming receive data that is phase-

aligned to the recovered clock, xcvr_rx_clk, must be realigned to the divide-by-16 data

rate clock, xcvr_clk, that is in phase with the slower divide-by-64 clock, block_clk, so

that the demultiplexer circuit can function. This realignment is accomplished through the

use of an Altera megawizard FIFO block configured in x16 data width on both sides.

The FIFO is set up so that two clock cycles after data begin to be written in, those data

will be read out on every subsequent clock cycle. The FIFO size is 8 words deep, and

since the clock frequencies on both sides are equal the FIFO is guaranteed to never

overflow or underflow. The two clock cycle delay ensures that the location being read

from is never the same as that being written to eliminating possible timing violations

 106

between different time domains. The output data from the FIFO is aligned with the

xcvr_clk signal.

Next the data is demultiplexed from 16 bits wide to 64 bits wide at the slower

block_clk frequency. The data demultiplexer block also contains a buffer that is two 64-

bit words deep, allowing for any possible alignment of the 8 bytes in the 64-bit word to

be extracted. When the receiver first starts receiving data, there is no guarantee that the

alignment of the data coming out of the demultiplexer matches a transmitted ECC code

word. To accomplish this alignment, there is a state machine in the receive synchronizer

block that monitors that error count and MRL error outputs from the ECC and MRL

decoder to determine if alignment has occurred. If there are errors, then the state

machine causes the bit_slip_o output to be asserted which is sent to the transceiver and

causes it to slip its bit alignment by one bit. The bit alignment slip in the transceiver,

however, wraps around on word boundaries, so that after 16 bit slips the bit alignment

will be exactly as it was in the beginning. To account for this, the bit_slip signal is also

connected to the demultiplexer block where a counter causes the byte alignment to

change by one after every 16 bit slips since if 16 bit slips occurred without

synchronization being found, the byte alignment must be off. The combination of the

state machine and the demultiplexer will continuously cycle through all possible

alignments until the right alignment is found and the decoded data are error free. This

receive synchronization method is a great advantage to a system that uses error correction

coding and was somewhat of an unanticipated benefit of the coding. This

synchronization will be referred to as ECC block synchronization from here forward.

The criteria for ECC block synchronization was set to the following:

 107

• The ECC decoder error count had to be 0 or 1 for each of 8 consecutive words (it

could not be 2 or 3);

• There could be no MRL errors for 8 consecutive words.

The state machine is shown in Figure 34. Once ECC block synchronization occurs, the

design assumes that it remains synchronized and will never try to resynchronize.

BIT_SLIP

sync_count = 8 and

receive_error = ‘1’

else

DETECT_ERR

ORS

reset

SYNC_FOU

ND

sync_count = 8 and

receive_error = ‘0’

WAIT_FOR_

SLIP

sync_count = 255

else

IDLE

else

sync_en = ‘1’

Figure 34 - ECC block synchronization state machine.

The last two parts of the path are the ECC and MRL decoder and the BERT

receiver. The design is set up such that the BERT receiver will not try to achieve data

pattern synchronization until ECC block synchronization has occurred. The receiver was

set up with the data pattern synchronization criteria as no more than 1 bit error over 1024

 108

data words. The BERT receiver was set up so that data pattern synchronization would be

lost if more than 50 bit errors occurred over 1024 data words.

One additional complication in the design that was encountered is that the BERT

and ECC blocks were both designed to shift data serially most significant bit first. The

Altera Stratix GX transceiver shifts data serially least significant bit first and when

multiple bytes are used they send data least significant byte first. This does not really

matter in the implementation that combines the ECC and BERT blocks since the ECC

block synchronization guarantees alignment in the receiver. However, in the uncoded

design with only the BERT blocks, there is a possibility with certain bit and byte

alignments that the receiver will not synchronize to the data pattern because adjacent bits

do not always end up next to each other coming out on the receive side. To fix this, the

transmit data going to the transceiver and the receive data coming from the transceiver

was bit reversed so that the bits were transmitted most significant bit first. There were

many design challenges faced in getting receive data from the transceiver in the correct

alignment.

5.2 Stratix GX Development Board Indicators and Settings

The test and control logic shown in Figure 31 uses some dip switches on the

Stratix GX development board to control how the testing is conducted. For test setup the

switches control the test duration or the number of data words on which the BERT

receiver will measure bit error rate and the data pattern to be used in the test. The design

was set up to use two different programmable data words in addition to the two PRBS

patterns. The first was an alternating 10 pattern and the second was a 0xABCD repeating

word. This section describes the meaning and use of some of the indicators and switches

 109

used on the Stratix GX development board within the design. A summary of the switch

inputs is shown in Table 10. A summary of the LED and numeric display meanings is

shown in Table 11.

Table 10 - Stratix GX development board dip switch settings for integration design.

Switch

Reference

Designator

Switch #
Switch Net Name in

Design
Settings

0
gx_dip0_i

1
gx_dip1_i

SW1 SW0 Bit-Error-Rate-Tester Pattern

 0 0 Programmable word

 0 1 2
11

-1 PRBS pattern

 1 0 2
31

-1 PRBS pattern

 1 1 Disable pattern generator

2

gx_dip2_i Set programmable word type.

0 = set to an alternating pattern of 1s and 0s

1 = set to preprogrammed data word

3
gx_dip3_i

4
gx_dip4_i

SW4 SW3 Test duration

0 0 Short (half a minute)

0 1 Medium (15 minutes)

1 0 Long (several hours)

1 1 Very Long (several days)

5

gx_dip5_i Selects the MSB or LSB of the err_cnt to be

displayed.

0 = LSB

1 = MSB

6

gx_dip6_i Selects the source for display_cnt<7:0>, the

counter value to be displayed on the LED display.

0 = err_cnt (see gx_dip5_i for which bits are

selected)

1 = bit_slip_cnt<7:0>

S11

7 gx_dip7_i Not used

 110

Table 11 - Stratix GX development board status indicators for integration design.

Indicator

Reference

Designator

Indicator

Description

Output Net

Name in

Design

Status Net Name in

Design Status Indicated

D10 LED 0 gx_led0_o sync_detect

Indicates whether the receiver

has achieved ECC block

synchronization. (On =

synchronized)

D11 LED 1 gx_led1_o sync_loss_status_latch

Indicates whether the BERT

receiver has ever lost data pattern

synchronization (On =

synchronization has been lost)

D12 LED 2 gx_led2_o err_ovrflw_latch

Indicates whether the error

counter has ever overflowed (On

= overflow has occurred)

D13 LED 3 gx_led3_o heartbeat_led

D14 LED 4 gx_led4_o sync_status_latch

Indicates whether the BERT

receiver has ever achieved data

pattern synchronized (On =

synchronization has occurred)

D15 LED 5 gx_led5_o disp_ovrflw_latch

Indicates whether the MRL

encoder block has ever indicated

that it had a running disparity

overflow (On = running disparity

overflow occurred)

gx_dig_1a_o

gx_dig_1b_o

gx_dig_1c_o

gx_dig_1d_o

gx_dig_1e_o

gx_dig_1f_o

7 Segment

display first

digit

gx_dig_1g_o

display_cnt(7:4)

or display_cnt(15:12)

Most significant nibble of bit-

error-rate-tester error count or

count of the number of bit slips in

hex

7 Segment

display first

period

gx_dig_1dp_o sync_status

Bit-error-rate-test receiver

synchronization status

(On = synchronized)

gx_dig_2a_o

gx_dig_2b_o

gx_dig_2c_o

gx_dig_2d_o

gx_dig_2e_o

gx_dig_2f_o

7 Segment

display second

digit

gx_dig_2g_o

display_cnt(3:0)

or

display_cnt(11:8)

Least significant nibble of bit

error rate tester error count or

count of the number of bit slips in

hex

D9

7 Segment

display second

period

gx_dig_2dp_o test_done

Indicates whether the BERT test

has reached the maximum word

count and is done.

(On = test done)

 111

5.3 Test Results

Testing was performed using the Altera Stratix GX development board with the

design described in section 5.1. Two versions of this design were created, one exactly as

described and another containing only the BERT pattern generator and receiver and not

the coding blocks. The reference clock frequency on the development board and the PLL

multipliers available in the Stratix GX device allowed for transmission rates of 2.5 Gbps

and 3.125 Gbps. The testing was performed using 3.125 Gbps as a coded-data bit rate for

the coded data and 2.5 Gbps for the uncoded data. The ratio of these two rates represents

a reasonable approximation of the code rate of the ECC used in this project (actual code

rate is 0.75 while this ratio is 0.8). Therefore, on both cases the rate of transfer of input

data is approximately the same (2.34375 Gbps versus 2.5 Gbps). It would be better to

compare coded to uncoded transfers with transmission rates having the 0.75 ratio, and

therefore both transferring input data at the same rate, but that was not easily

accomplished in the test setup.

Testing was performed using four different data patterns for both the coded and

uncoded designs. Those data patterns were a 16-bit repeating word pattern of 0xABCD,

an alternating 1010 pattern, the 2
11

 – 1 PRBS pattern, and the 2
31

 – 1 PRBS pattern. A

backplane loopback card was plugged into the Stratix GX development board as the

transmission channel, with a single transceiver transmitting, so there was minimal

crosstalk present during the testing. Two different backplane loopback cards were used,

one with 10 in. of trace length and the other with 40 in. of trace length, and bandwidth

plots for these were shown in Figure 7 in section 3.1.1. The optimum output voltage

setting for the transceiver was determined to be 1 V peak-to-peak differential for the loss

 112

in the 40 in. backplane channel and this setting was used for both the 10 in. and the 40 in.

backplane tests. Originally the transceiver was set up for no channel equalization, but

some experimentation with the equalization settings was done.

A couple of different test durations were used in the BER testing. The first will

be referred to as the short test and was set to test 6.87 * 10
10

 information bits for the

uncoded data (test duration of about 0.46 minutes) and 6.44 * 10
10

 information bits for

the coded data (test duration of about 0.46 minutes). This test would be expected to

count over 60 bit errors for bit error rates around 10
-9

, providing a good statistical

confidence at this bit error rate. The second duration will be referred to as the long test

and was set to test 5.28 * 10
13

 bits for the uncoded data (test duration of 5.87 hours) and

5.28 * 10
13

 bits for the coded data (test duration of 6.26 hours). This test would be

expected to result in over 50 bit errors for bit error rates around 10
-12

, providing a good

statistical confidence at this bit error rate. If the long test completed error free, there is

95% confidence that the bit error rate is below 5.68 * 10
-14

.

In addition to BER measurements, some signal quality measurements were also

made using a Lecroy SDA6020 Serial Data Analyzer. This is a 6 GHz real-time

oscilloscope with some software applications for measuring jitter and bathtub curves.

The scope stores 32 M samples per channel and can sample at 20 GS/s. A solder-in

probe with a bandwidth of 7 GHz was used for the measurements (part number D600ST-

S1). The following sections describe some actual test results based on the above test

setups and test equipment.

 113

5.3.1 BER for 10 in. Backplane Channel Uncoded Data

Testing was performed with uncoded data being transferred at 2.5 Gbps through

the 10 in. backplane. Multiple short tests were performed with each data pattern. Data

pattern synchronization always occurred, and there were never any bit errors. A long test

was performed using the 2
11

 – 1 PRBS pattern, and there were no errors, meaning that the

bit error rate was below 5.86 * 10
-14

 with a 95% confidence. An eye diagram was

measured for for the 2
11

 – 1 PRBS pattern and is shown in Figure 35.

Figure 35 - Uncoded data eye diagram, 2.5 Gbps, 2
11

 - 1 PRBS pattern, 10 in. backplane

(oscilloscope screen capture).

 114

5.3.2 BER for 10 in. Backplane Channel Coded Data

Testing was performed with coded data being transferred at 3.125 Gbps (or an

information rate of 2.34375 Gbps) through the 10 in. backplane. ECC block

synchronization and data pattern synchronization occurred for all four data patterns tested

and there were never any bit errors measured in the short test duration. Multiple tests

were performed with each pattern. A long test was performed using the 2
11

 – 1 PRBS

pattern, and there were no errors, meaning that the bit error rate was below 5.86 * 10
-14

with a 95% confidence. An eye diagram was measured for the 2
11

 – 1 PRBS pattern and

is shown in Figure 36.

Figure 36 - Coded data eye diagram, 3.125 Gbps, 2
11

 - 1 PRBS pattern, 10 in. backplane

(oscilloscope screen capture).

 115

5.3.3 BER for 40 in. Backplane Channel Uncoded Data

Testing was performed with uncoded data being transferred at 2.5 Gbps through

the 40 in. backplane. Multiple short tests were performed with each data pattern, and

data pattern synchronization always occurred. For the alternating 1010 pattern and the

repeating data word 0xABCD pattern, there were never any bit errors. For the 2
31

 – 1

PRBS pattern the error counter overflowed and the BERT receiver lost synchronization

throughout the test. The bit error rate for this pattern had to be better than 1.53 * 10
-5

 but

it was much larger than the target bit error rate for the short test measurement, equal to

10
-9

. The behavior for the 2
31

 – 1 PRBS pattern was very consistent; however, the

behavior for the 2
11

 – 1 PRBS pattern was not. For the latter pattern, synchronization

always occurred and was never lost during a test, but the bit error rate varied from test to

test. The variance can be classified into three categories: a low bit error rate in which

only 1 to 5 errors were counted, a medium bit error rate when many errors were counted,

and a very high bit error rate where the error counter overflowed many times. The range

of errors measured that can be classified as medium varied a lot as well. The lowest

recorded error count was 609 and the highest was 88029 corresponding to error rates of

8.86 * 10
-9

 and 1.28 * 10
-6

 respectively. To rule out differences in the signal quality from

test to test being the cause of the bit error rate difference, eye diagram measurements

were made for the cases where medium bit error rate was observed and low bit error rate

was observed. The eye diagrams were basically identical. A reasonable explanation for

the variation is that the transceiver is synchronizing onto the data and centering its sample

point at a different location from test to test. Depending on the location of the sample

point, the error rate would vary. It’s not entirely clear why there seems to be three

 116

distinct error count classifications and not a more continuous distribution of error counts.

Everything points to something inside the transceiver as being the cause of this since (a)

nothing like this ever occurs on the 10 in. backplane channel, indicating that the logic is

not the cause, and (b) the signal quality is the same, so the channel is not the cause. An

eye diagram was measured for for the 2
11

 – 1 PRBS pattern and is shown in Figure 37.

This eye diagram clearly illustrates why there are bit errors, since it is nearly closed.

Figure 37 - Uncoded data eye diagram, 2.5 Gbps, 2
11

 - 1 PRBS pattern, 40 in. backplane

(oscilloscope screen capture).

 117

5.3.4 BER for 40 in. Backplane Channel Coded Data

Testing was performed with coded data being transferred at 3.125 Gbps (or an

information rate of 2.34375 Gbps) through the 40 in. backplane. For the alternating 1010

data pattern, ECC block synchronization occurs within the first pass, data pattern

synchronization occurs and there were never any bit errors measured over multiple short

tests. For the repeating 0xABCD data word pattern, ECC synchronization never

occurred, so no error count or data pattern synchronization was determined. For the 2
11

 –

1 PRBS pattern, ECC block synchronization always occurred but never on the first pass.

Data pattern synchronization never occurred for this pattern so no bit error count was

available. The results for the 2
31

 – 1 PRBS pattern were exactly the same as for the 2
11

 –

1 PRBS pattern; ECC block synchronization occurred after multiple passes but data

pattern synchronization never occurred. Clearly, the increased transmission rate required

to send the code bits makes the bit error rate worse than without coding for the 40 in.

backplane channel. An eye diagram was measured for the 2
11

 – 1 PRBS pattern and is

shown in Figure 38. This eye diagram clearly illustrates why data pattern

synchronization wasn’t possible, since it is completely closed.

Since it was clear that there was no coding gain at the code rate of the ECC design

in this project for the 40 in. backplane channel, an interesting question is, would there be

a coding gain at any code rate? To test this, the coded design was changed to operate at a

transmitted rate of 2.5 Gbps, the same transmitted rate as was used with the uncoded

system. The coded design now has an information rate of 1.875 Gbps. Multiple tests

were conducted with each data pattern in this setup. ECC block synchronization always

occurred on the first pass and data pattern synchronization also always occurred. There

 118

were never any bit errors for the alternating 1010 pattern, the repeating 0xABCD word

pattern, and the 2
11

 – 1 PRBS pattern for the short test. For the 2
31

 – 1 PRBS pattern

there was a varying bit error count from 649 to 21551, corresponding to bit error rates

from 1.01 * 10
-8

 to 3.34 * 10
-7

, respectively. This performance is clearly an improvement

over that of the uncoded data at 2.5 Gbps through the 40 in. backplane. The implication

is that a code having a code rate higher than that of the tested code (i.e., 0.75), but having

similar error correction capabilities and similar MRL characteristics, if it exists, may be

effective for the 40 in. backplane channel.

Figure 38 - Coded data eye diagram, 3.125 Gbps, 2
11

 - 1 PRBS pattern, 40 in. backplane

(oscilloscope screen capture).

 119

It is also interesting to note that over 25 short tests were performed using the 2
11

 -

1 PRBS pattern and there were never any bit errors detected. This is interesting because

at the same transmitted rate of 2.5 Gbps, the uncoded data had the three modes of

operation, low, medium, and high bit error rate. It seemed reasonable to expect that with

this coded system the high bit error rate mode would present itself at least occasionally

and result in some bit errors at 2.5 Gbps. The 2
31

 -1 PRBS pattern with the coding also

did not exhibit the different modes of operation, all the measurements could be classified

as medium bit error rates.

5.3.5 Equalization with Coded and Uncoded Data in the 40 in. Backplane

Some additional testing was done on the 40 in. backplane channel with the 2.5

Gbps uncoded data and the 3.125 Gbps coded data. The receiver within the transceiver

has an equalizer built in that can be set to a range of equalization levels from 0 (off) to 4

(maximum equalization). Experimentation revealed that a setting of 2 for the coded data

at 3.125 Gbps was sufficient to make the errors go away. In multiple tests with each of

the 4 data patterns for the coded data at 3.125 Gbps, ECC block synchronization always

occurred, data pattern synchronization always occurred, and there were never any bit

errors. A long test was also performed with the 2
11

 – 1 PRBS pattern and it completed

error free indicating a 95% confidence that the bit error rate is better than 5.86 * 10
-14

.

The same equalization setting of 2 was used on the 2.5 Gbps uncoded data with the 40 in.

backplane with exactly the same results; data pattern synchronization always occurred,

there were never any bit errors on the short test, and the long test with the 2
11

 – 1 PRBS

 120

pattern completed error free. It is not clear from the results of this test if the bit error rate

was improved with the use of coding and equalization.

5.3.6 BER Bathtub Curves and Coding Gain for 10 in. Backplane Channel

The bathtub curve model of bit error rate versus sample position described in

section 3.4.4 can be used to evaluate the improvement due to the addition of error-

correction coding, for an ECC design. This is being referred to as an improvement due to

the addition of error-correction coding, instead of a coding gain, because it is being

determined for a system for which coding is added without increasing the transmission

rate in the channel. In such a case the rate at which input data is transferred will be

reduced. For the situation where the coded system has a transmission rate in the channel

that is increased to keep the transfer rate of input data at a constant, an analyzed

improvement is referred to as a coding gain. The improvement due to the addition of

error-correction coding can still be a useful measure to evaluate whether a given code rate

code will be effective if the change in jitter from one transmission rate to another can be

estimated. The uncoded bit error rate can be converted into a coded bit error rate using

(36) [35], where

()∑
+=

−
−








≤

n

ti

ini

coded pp
i

n
BER

1

1 .
(36)

In (36) n is the code word size (63 bits for the ECC design in this project), t is the

number of bit errors that can be corrected per code word (2 for the ECC design in this

project), and p is the transition probability of a binary symmetric channel (BSC) or the

uncoded probability of a bit error. Equation (36) was derived from an upper bound on

 121

code word error probability [35], and assumes that for every code word error that occurs,

all 48 data bits in the code word will be in error. This assumption is overly pessimistic

and therefore weakens the upper bound on the amount of improvement due to the

addition of ECC. In this design, where an ECC code is used with an MRL code, if

uncorrected bit errors occur in the MRL code bit positions, the MRL decoder could

incorrectly invert or not invert the data bits causing most of the bits to then be in error. A

better upper bound could be placed on the improvement due to the addition of the ECC in

this design by calculating the likelihood that a code word error would result in errors in

the MRL bit positions and using that to determine the average number of bit errors per

code word error. Equation (36) could then be modified by including an additional factor

equal to the average fraction of data bits in error in each code word that has errors.

Another equation giving an approximation of the improvement in bit error rate due to the

addition of an ECC is shown in (37) [22], where

()
n

pp
i

n
iBER

n

ti

ini

coded

1
1

1

×







−








⋅≈ ∑

+=

−
.

(37)

 Equation (37) does not assume any increase in bit errors by subsequent MRL

decoding after the ECC decoder, so it is a bit optimistic in estimating the improvement in

bit error rate due to the addition of an ECC. Equation (36) has been used for analysis in

this project, but a comparison was made between (36) and (37) to show how much

difference there is. The true improvement in bit error rate due to the addition of the ECC

in this design is expected to be between these two.

Using (36) with the XAUI bathtub curve shown in Figure 15 in section 3.4.4 and

the ECC design in this project results in a plot of the bit error rate versus receiver sample

 122

time for a system with the addition of coding. Plots of the XAUI bathtub curve (that is,

the bathtub curve derived from the XAUI standard) and the XAUI bathtub curve with an

improvement due to the addition of ECC, based on (36), are shown in Figure 39.

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling Point (UI)

P
b

Receiver Threshold Window Bit Error Rate for Uncoded Data (RJ=0.0129 UI rms, DJ=0.47 UI) Bit Error Rate for Coded Data (RJ=0.0129 UI rms, DJ=0.47 UI)

Figure 39 - Coding gain bathtub curves for system with XAUI jitter parameters.

The improvement due to the addition of coding, shown in Figure 39, at a bit error rate of

10
-12

, is about 0.0335 UI of jitter per side of the bathtub or a total of 0.0671 UI of jitter.

For a system operating at the same bit error rate of 10
-12

 but with all random jitter and no

deterministic jitter (random jitter of 0.0464 UI rms) the improvement due to the addition

of coding is 0.119 UI of jitter per side of the bathtub or a total of 0.237 UI of jitter. So

the actual theoretical improvement due to the addition of coding for this system should be

somewhere in the range between 0.0671 UI and 0.237 UI of jitter depending on the

characteristics of the jitter in the system. The improvement due to the addition of coding

using (37) was analyzed for comparison purposes and was found to be 0.0731 for the

XAUI jitter case, and 0.258 for the all random jitter case. Equation (37) is more

optimistic than (36) by 0.006 UI for the XAUI jitter case and 0.021 UI for the all

 123

random jitter case. It is interesting to note that the code is more effective on systems with

random noise than systems with both random and deterministic noise.

This bathtub curve methodology was used to evaluate the effectiveness of the

coding in the 10 in. backplane system since the BER measurement results were not

conclusive. The Lecroy SDA6020 was used to measure the bathtub curve for the

transmitted data at 3.125 Gbps (the rate used in the channel with coding) and for the

transmitted data at 2.5 Gbps (the rate used in the uncoded channel), in both cases using

the 2
11

 – 1 PRBS data pattern. The scope results are best when many repeats of a pattern

can be captured in the sample memory for analysis and this is not possible with the longer

2
31

 – 1 PRBS pattern. Equation (36) was then applied to the 3.125 Gbps bathtub curve

to obtain a bathtub curve applicable to the information or input data for the system with

ECC, and the three curves were compared, as shown in Figure 40.

Based on Figure 40, the improvement due to the addition of ECC at a channel

transmission rate of 3.125 Gbps and at a bit error rate of 10
-12

 is 0.096 UI on the left side

and 0.072 UI on the right side for a total improvement of 0.168 UI. This is just about in

the middle of the theoretical range of improvements between 0.0671 UI and 0.237 UI.

Also, based on Figure 40, the coding gain between the coded data at a transmission rate

of 3.125 Gbps (or an information rate of 2.34375 Gbps) and the uncoded data at 2.5 Gbps

is 0.035 UI on the left side and 0.037 UI on the right side for a total coding gain of 0.072

UI. This indicates that for the 10 in. channel, the error correction coding is likely to be

effective at lowering the bit error rate. The channel is already operating well below the

target bit error rate of 10
-12

 without the coding however.

 124

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sample Time (UI)

B
E

R

BER for 3.125 Gbps, 10 in. backplane, 2^11 1 PRBS pattern (coded system, transmitted-data BER)

BER for 3.125 Gbps, 10 in. backplane, 2^11 1 PRBS pattern, (coded system, input-data BER)

BER for 2.5 Gbps, 10 in. backplane, 2^11 1 PRBS pattern (uncoded system)

Figure 40 - Coding gain for 10 in. backplane channel.

 125

6 Conclusions and Future Work

An ECC block and a BERT block have been successfully designed, implemented

and tested. The ECC block has a code rate of 0.75, meets the MRL requirements of the

transceivers and transmission channel, and has a decoding latency of 4 parallel clock

cycles or 81.92 ns at 3.125 Gbps. The implemented logic was able to function with a

data rate up to 4.34 Gbps, well beyond the capabilities of the transceivers in the Altera

Stratix GX. An unexpected benefit of the error correction code was the ease with which

ECC block synchronization could be achieved by simply moving the bit alignment until

the ECC decode block indicated that there were no errors. This algorithm is no more

complicated than the synchronization algorithms currently used in 8B/10B coding. The

chosen ECC code is a BCH code that can be implemented with reasonable complexity,

and has acceptable decoding latency for applications with multi-gigabit data rates. The

BERT block supports three data patterns and is easily configurable and reusable. The

performance of the BERT block is sufficient to support 3.125 Gbps data rates in the

Altera Stratix GX device.

The coding gain of the ECC block was not sufficient for a 40 in. backplane

channel dominated by intersymbol interference. Some additional analysis with a high

speed oscilloscope showed that the ECC design was effective on a 10 in. backplane

channel. At data rates below 3.125 Gbps, it is not clear if the ECC design would be

useful for any real channels. A 10 in. channel does not require error correction to achieve

low enough bit error rates. It is clear that a higher code rate is needed for coding to be

effective for a 40 in. backplane channel. Determining what code rate is necessary could

be done on the current test setup by using a function generator to provide a reference

 126

clock to the Altera Stratix GX device. By adjusting the frequency of the reference clock,

different data rates could be quickly tried to determine the transmitted data rate at which

the current ECC design becomes ineffective, between 2.5 Gbps and 3.125 Gbps. Then

2.5 Gbps, divided by this data rate would be a plausible code rate to further investigate.

A new ECC could be designed with the higher code rate and evaluated. Another area for

investigation would be different backplane channel lengths between 10 and 40 in. to

determine the maximum channel length for which the coding is effective. Perhaps this

investigation would also reveal the coding to be more useful for some backplane channel

lengths, than it is for the 10 in. backplane.

The strange behavior of the system at 2.5 Gbps without coding in the 40 in.

backplane for the 2
11

 – 1 PRBS pattern is something that could use further investigation.

The three different modes of bit error rate performance of low, medium, and high were

not seen during the coded data transmission at the same transmission rate. An ECC

corrected error counter could be added to the design to count the number of bit errors that

have been corrected. This could give some insight into whether the bit errors are still

present but are being corrected, or if for some reason due to the data coding alone (MRL

coding or additional transitions due to the parity bits) the performance is improved.

The analysis and results indicated that the ECC design is most effective for

channels with random noise and is less effective for deterministic noise. As data rates

continue to increase, random noise in the form of random jitter will become a larger part

of the timing budget. Channel equalization will probably continue to be the first option

to combat intersymbol interference, but error correction coding such as that used in this

design is also potentially very useful in achieving the target bit error rates.

 127

One thing that was discovered in the project testing was that there is a very strong

relationship between data pattern and bit error rate. The longer patterns in most cases

seemed to have higher bit error rates. This is definitely an area for more investigation. It

indicates that when an error correction code is designed for serial digital multi-gigabit

communication systems, the type of data must be taken into account when the code is

designed. A specific area of investigation that relates to the pattern length is the MRL

coding part of the design. The performance of the MRL code design should be more

thoroughly characterized and possibly improved.

The goal of learning about digital communication systems and how they apply to

serial digital multi-gigabit communication has been achieved. The communication

channel and transceivers have been characterized to determine the factors that are

important in code design. Also, the relationship between bit error rate and jitter has been

investigated and applied in the project. Some effort has also been spent determining

statistical methods to measure bit error rates. A lot of knowledge about error correction

codes was also gained by implementing the BCH code, including knowledge about

Galois fields, generator polynomials, and error search algorithms.

Another goal of the project was to become familiar with the Altera Stratix GX

transceivers. Many obstacles were encountered throughout the implementation phase of

the project in working with the transceivers. The most difficult aspects of working with

serial data were in making the transformation from serial to wider parallel clock domains

and maintaining the proper bit and byte ordering on the receive side. There were several

bugs in the logic design that had to be uncovered that related to this, and some were due

to misunderstandings about how the Altera Stratix GX transceiver operated. The best

 128

example is how the bit slipping operation works within the transceiver. It is actually not

a true bit slipping function, but it wraps around on word boundaries.

There are several other areas where some additional investigation could be

performed as future projects. One is to evaluate the effects of crosstalk on the bit error

rate and see how effective the code design is at dealing with this type of noise. The test

setup in this project would be a good starting point since there are four transceivers in the

Stratix GX device that connect to the backplane connector. Three aggressor channels

could be turned on transmitting BERT data to determine the effects. Another area for

investigation would be a more detailed comparison of the performance of the coding

design in this project with the 8B/10B coding commonly used in serial standards with

multi-gigabit data rates. Some additional work can be done in comparing the error

correction capabilities of the code design in this project to the CRC codes commonly

used in the serial standards. Enhancements to the code design may be possible that

incorporate some additional error detection capabilities to eliminate the need for using

CRC codes in conjunction with this coding scheme. Finally, some investigation into how

a block code such as that designed in this project can fit into a higher layer protocol

would be useful.

 129

7 References

[1] Eiliya, Herman. July / August, 2003. “Grasp the Ins and Outs of High-

Speed I/O” Communications Systems Design Vol 9 (7), pp. 38-41.

[2] IEEE Computer Society. August 30, 2002. IEEE Std 802.3ae - 2002

(Amendment to IEEE Std 802.3 - 2002). New York, NY: The Institute of

Electrical and Electronics Engineers.

[3] Infiniband Trade Association. November 6, 2002. Infiniband Architecture

Specification Volume 1 and 2 Release 1.1. Portland, OR: Infiniband Trade

Association.

[4] PCI-SIG. April 15, 2003. PCI Express Base Specification, Rev 1.0a.

Portland, OR: PCI Special Interest Group.

[5] RapidIO Trade Association. June, 2002. RapidIO Interconnect

Specification Part VI: Physical Layer 1x/4x LP-Serial Specification.

Austin, TX: RapidIO Trade Association.

[6] Altera Corporation. February 2004. “Altera Stratix GX FPGA Family

Datasheet version 2.1.” [Internet, WWW, PDF]. Available: Available in

.PDF format; Address: http://www.altera.com/literature/ds/ds_sgx.pdf.

[Accessed: 22 April 2004].

[7] Xilinx Corporation. March 9, 2004. “Xilinx Virtex-II Pro Platform

FPGAs: Complete Datasheet version 3.1.1.” [Internet, WWW, PDF].

Available: Available in .PDF format; Address

http://direct.xilinx.com/bvdocs/publications/ds083.pdf. [Accessed: 22

April 2004].

[8] Johnson, Howard and Martin Graham. 2003. High-Speed Signal

Propagation Advanced Black Magic. New Jersey: Prentice Hall

Professional Technical Reference.

[9] Widmer, A. X., P. A. Franaszek. September 1983. “A DC-Balanced,

Partitioned-Block, 8B/10B Transmission Code” IBM Journal of Research

and Development Vol. 27 (5), pp. 440-451.

[10] National Committee for Information Technology Standards. November

19, 2002. Information technology - Fibre Channel - Physical Interfaces

(FC-PI). ANSI INCITS 352-2002.

 130

[11] National Committee for Information Technology Standards. October 22,

2003. Information Technology - Fibre Channel - Framing and Signaling

(FC-FS). ANSI INCITS 373-2003.

[12] Altera Corporation. 2003. Altera Stratix GX Development Board Data

Sheet version 1.1. Order Number: DS-STGXDVBD-1.1. San Jose,

California: Altera Corporation.

[13] Gray, J. S. 1972. “One Gigabit/Second Signal Processing and Data

Handling.” Microwave Symposium Digest, GMTT International. Vol. 72

(1) pp 192-194.

[14] Bosch, Berthold G. March 1979. "GIGABIT ELECTRONICS - A

REVIEW." Proceedings of the IEEE. Vol. 67 (3) pp 340-379.

[15] Tektronix. 26 September 2001. "SONET Telecommunications Standard

Primer" [Internet, WWW, PDF]. Available: Available in .PDF format;

Address:

http://www.tektronix.com/Measurement/App_Notes/SONET/2RW_11407

_2.pdf. [Accessed: 24 September 2003]. A copy of this document is

available from the author.

[16] "Vitesse’s GaAs Multiplexer Handles Telecom Data at 1.25 Gigabit/s"

March 31, 1998. Electronics Vol. 61 (7), pp. 26.

[17] Walker, Richard C., Thomas Hornak, Chu-Sun Yen, Joseph Doernberg,

and Kent H. Springer. June 1991. "A 1.5 Gb/s Link Interface Chipset for

Computer Data Transmission" IEEE Journal on Selected Areas in

Communications Vol. 9 (5), pp. 698-703.

[18] Menasce, Victor. October 17, 2001. “Breaking Performance Bottlenecks

with Rapid I/O” Electronic Engineernig Vol. 73 (897), pp 45-48.

[19] Holden, Brian. “HyperTransport I/O Link Adds Networking Extensions

for Next Generation Communications Design.” In DesignCon 2003

Conference. 27-30 January 2003. DesignCon 2003 System-on-Chip and

ASIC Design Conference. International Engineering Consortium.

[20] Strassberg, Dan. November 28 2002. “Testing Gigabit Serial Buses. First

Get Physical.” EDN Vol. 47 (26), pp 53-63.

[21] Shannon, Claude E. July and October 1948. “A Mathematical Theory of

Communication.” Bell System Technical Journal Vol. 27, pp 379-473 and

623-656.

 131

[22] Sklar, Bernard. 2001. Digital Communications Fundamentals and

Applications Second Edition. New Jersey: Prentice Hall PTR.

[23] Merix Corporation. 2003. Material Property Comparison. [Internet,

WWW, PDF]. Available: Available in .PDF format; Address:

http://www.merix.com/technology.php?section=add&page=secured/pdf/m

tl_property_comp.pdf . [Accessed: 25 March 2004]. A copy of this

document is available from the author.

[24] Razavi, Behzad. 2001. Design of Analog CMOS Integrated Circuits. New

York, NY: The McGraw-Hill Companies, Inc.

[25] Franco, Sergio. 2002. Design with Operational Amplifiers and Analog

Integrated Circuits Third Edition. New York, NY: The McGraw-Hill

Companies, Inc.

[26] National Committee for Information Technology Standards. September 1,

1999. Information Technology - Fibre Channel - Methodologies for Jitter

Specification. INCITS TR-25-1999.

[27] Tyco Electronics. May 4, 2001. “AMP Z-PACK HM-Zd Performance at

Gigabit Speeds, Report # 20GC014, Rev. B.” [Internet, WWW, PDF].

Available: Available in .PDF format; Address:

http://hmzd.tycoelectronics.com/documents/electrical_performance.pdf.

[Accessed: 16 March 2004].

[28] Ahmad, Bilal. “Performance Specification of Interconnects.” In

DesignCon 2003 Conference. February 2003. DesignCon 2003 High-

Performance System Design Conference. International Engineering

Consortium.

[29] PCI-SIG. July 24, 2000. PCI-X Addendum to the PCI Local Bus

Specification, Rev 1.0a. Portland, OR: PCI Special Interest Group.

[30] Ahmad, Bilal and Jeff Cain. “Performance Evaluation of High Speed

Serial Links.” In DesignCon 2001 Conference. January 29 – February 1,

2001. DesignCon 2001 Conference Proceedings. International

Engineering Consortium.

[31] Shannon, Claude E. 1949. “Communication in the Presence of Noise.”

Proceedings of Institute of Radio Engineers Vol. 37, pp 10-21.

[32] van Wijngaarden, Adriaan J., and Kees A. Schouhamer. April 2001.

“Maximum Runlength-Limited Codes with Error Control Capabilities.”

IEEE Journal on Selected Areas in Communications Vol. 19 (4), pp. 602-

611.

 132

[33] Costello, D.J. , J. Hagenauer, H. Imai, and S.B. Wicker. October 1998.

“Applications of Error-Control Coding.” IEEE Transactions on

Information Theory Vol. 44 (6), pp 2531-2560.

[34] Williams, Dave. February 3, 2000. “Turbo-Product Codes Advance ECC

Technology.” EDN Vol. 45 (3), pp 77-82.

[35] Lin, Shu and Daniel J. Costello. 2004. Error Control Coding:

Fundamentals and Applications Second Edition. New Jersey: Prentice

Hall.

[36] MacWilliams, F. J. and N. J. A. Sloane. 1977. The Theory of Error-

Correcting Codes. Amsterdam, The Netherlands: Elsevier Science B. V.

[37] Coles, Alistair and David Cunningham. October 1998. “Low Overhead

Block Coding for Multi-Gb/s Links.” HP Labs Technical Reports

Extended Enterprise Laboratory HPL-98-168.

[38] Wicker, Stephen B. 1995. Error Control Systems for Digital

Communication and Storage. New Jersey: Prentice Hall Inc.

[39] Synthesys Research. 2004. “BERTScope 7500A and 12500A Bit Error

Rate Analyzer Datasheet.” [Internet, WWW, PDF]. Available: Available

in .PDF format; Address:

http://www.synthesysresearch.com/pdf/BERTScope.pdf. [Accessed: 22

July 2004].

[40] DeCoursey, W. J. 2003. Statistics and Probability for Engineering

Applications with Microsoft Excel. Massachusetts: Elsevier Science.

[41] Wolaver, Dan H. May 30, 1995. “Measure Error Rates Quickly and

Accurately.” Electronic Design Vol. 43 (11), pp 89-98.

[42] International Telecommunication Union Telecommunication

Standardization Sector. May 1996. General Requirements for

Instrumentation for Performance Measurements on Digital Transmission

Equipment. ITU-T Recommendation O.150.

[43] Coombs, Clyde F. 1999. Electronic Instrument Handbook Third Edition.

New York: McGraw-Hill.

 133

8 Bibliography

Altera Corporation. 2003. High-Speed Development Kit, Stratix GX Edition User

Guide version 1.0. Order Number: UG-STRATIXGX-1.0. San Jose, California:

Altera Corporation.

d’Abreu, Manuel. 2002. “Noise – Its Sources, and Impact on Design and Test of

Mixed Signal Circuits” Proceedings of the First IEEE International Workshop on

Electronic Design, Test and Applications. IEEE Computer Society.

Imai, H. 1990. Essentials of Error-Control Coding Techniques. San Diego, CA:

Academic.

 134

9 Appendix A – ECC Block Datasheet

Serial Digital Multi Gigabit

Communications Block Code – (51,48)

MRL and (63,51) BCH

Document Number: 9132.011

EC/Revision: Rev 1.0

Revision Date: March 7, 2005

Author: David Carney

Features:

• Two error correcting capability

• Some three or more error

detecting capability

• 48 bit logic side data interface

• 16 bit transceiver side data

interface

• Run length limited to 64 bits

• Provides a mechanism for DC

balanced data (no guarantee)

• more features

Description:

The core consists of two separate blocks, the encoder and the

decoder. The encoder performs a maximum run length

limiting on the data followed by parity generation using a

(63,51) BCH code. The decoder performs the inverse

operation of this. The core is written in VHDL.

Required VHDL Files:

mrl_bch_encoder_64_48.vhd

 mrl_51_48_encoder.vhd

 bch_63_51_encoder.vhd

bch_mrl_decoder_64_48.vhd

 bch_63_51_syndrome.vhd

 bch_63_61_error_poly.vhd

 gf_2_6_mult.vhd

 gf_2_6_inverter.vhd

 bch_63_51_error_search.vhd

 mrl_51_48_decoder.vhd

Required Libraries:

ieee.std_logic_arith.all

ieee.std_logic_unsigned.all

ieee.std_logic_signed.all

ieee.std_logic_1164.all

gf_2_6_field_pkg.all (gf_2_6_field_pkg.vhd)

 135

Encoder Description

Encoder Functional Diagram:

Encoder Timing:

Block Parameters Chip Speed

Grade

Package Area Speed

(MHz)

DISPARITY_REG_SI

ZE = 9

Altera Stratix GX

(EP1SGX25FF1020)

-5 1020 pin

BGA

450 LCs

181 LC

Registers

67.79

 136

Encoder Parameters:

Generic Default

Value

Description

DISPARITY_REG_SIZE 9 Number of bits that the signed running disparity register

contains.

Encoder Input/Output Descriptions:

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

block_clk_i std_logic NA NA I Clock used by the block. A new 48 bit

data input symbol is valid on every

rising edge of this clock. The encoded

data rate of the block is 64x this clock.

reset_n_i std_logic NA NA I Reset signal for the core (0=reset state,

1=out of reset). This input is

asynchronous.

data_in_i std_logic_vector 47 0 I Contains the data input symbol. It is

synchronous to and valid on the rising

edge of the block_clk_i. This comes

from the internal core logic source of the

data.

pad_bit_i std_logic NA NA I Contains a pad bit that is added to the

coded bit in data_out_o position 63 for

every block output from the encoder.

This input must be synchronous to and

valid on the rising edge of block_clk_i.

The output will be delayed will be

delayed by three clock cycles so that it

matches with the same data_in_i word

that it was input with.

data_out_o std_logic_vector 63 0 O Contains the data output symbol. It is

synchronous to and output on the

block_clk_i. This goes to the transceiver

transmit block.

disparity_over

flow_o

std_logic NA NA O A flag to indicate if a running disparity

counter overflow has occurred. This

output is synchronous to and output on

the rising edge of block_clk_i.

 137

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

enable_i std_logic NA NA I Causes the encoder to be enabled or

disabled (1=enabled, 0=disabled). This

input is synchronous to and valid on the

risinge edge of block_clk_i. In the

disabled state the block will be

completely inactive and output data will

not change.

When enable_i transitions from 0 to 1

the block immediately begins processing

and outputting data.

clr_run_dispar

ity_i

std_logic NA NA I Causes the MRL encoder to clear the

running disparity register to 0. This

input is synchronous to and valid on the

rising edge of block_clk_i. If this signal

is a 1, the running disparity register will

be set to 0 on the next block_clk_i cycle.

Encoder Input Truth Table:

n_reset_i enable_i Clr_run_di

sparity_i

Core State

0 X X The encoder is in reset, data_out_o is all zeros. The

running disparity counter is reset and all internal data

pipeline registers are set to zeros.

1 0 0 Disabled – Core disabled meaning no data is latched in

from data_in_i but all other internal registers retain their

state and the output data remains in the last valid state.

1 1 0 Enabled – data_out_o will be the encoded version of

data_in_i.

1 X 1 The current enabled or disabled state applies to all registers

except the running disparity register which will be cleared

to 0 on the next clock cycle.

 138

Decoder Description

Decoder Functional Diagram:

 139

Decoder Timing:

Block

Parameters

Chip Speed

Grade

Package Area Speed

(MHz)

NA Altera Stratix GX

(EP1SGX25FF1020)

-5 1020 pin

BGA

989 LCs

306 LC Registers

105.33

Decoder Input/Output Descriptions:

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

block_clk_i std_logic NA NA I Clock used by the block. A new 48 bit

data output symbol is valid on every

rising edge of this clock. The decoded

data rate of the block is 64x this clock.

reset_n_i std_logic NA NA I Reset signal for the core (0=reset state,

1=out of reset). This input is

asynchronous.

data_in_i std_logic_vector 63 0 I Contains the input data symbol from the

transceiver. It is synchronous to and

valid on the rising edge of xcvr_clk_i.

The data block to be decoded consists of

four consecutive data_in_i symbols.

data_out_o std_logic_vector 47 0 O Contains the data output symbol. This

goes to the internal core logic. This

signal is clocked out on the rising edge

of block_clk_i.

enable_i std_logic NA NA I Causes the decoder to be enabled or

disabled (1=enabled, 0=disabled). This

input is synchronous to and valid on the

risinge edge of block_clk_i. In the

disabled state the block will be

completely inactive and output data will

not change.

When enable_i transitions from 0 to 1

the block immediately begins processing

and outputting data.

pad_bit_o std_logic NA NA O Contains the pad bit stripped off of the

input data word before decoding. The

output is delayed so that it matches up

with the same clock cycle that the

corresponding decoded data is output on.

This signal is output on the rising edge

of block_clk_i.

 140

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

error_cnt_o std_logic_vector 1 0 O Contains a count of the number of errors

the decoder detected / corrected as

ollows:

00 – No errors detected

01 – 1 Error detected and corrected

10 – 2 Errors detected and corrected

11 – 3 or more errors detected

This signal is output on the rising edge

of block_clk_i.

mrl_error_o std_logic NA NA O Contains an indication of whether or not

the MRL decoder detected an error

pattern in the MRL bits. (1=error, 0=no

error). This signal is output on the rising

edge of block_clk_i.

Decoder Input Truth Table:

n_reset_in enable_in Core State

0 X The decoder is in reset, data_out_o is all zeros. All

internal data pipeline registers are set to zeros.

1 0 Disabled – Core disabled meaning no data is latched in

from data_in_i but all other internal registers retain their

state and the output data remains in the last valid state.

1 1 Enabled – data_out_o will be the decoded version of

data_in_i.

 141

Background

For detailed background information on the use of ECC in serial digital multi gigabit communication

systems, refer to section 3.6.

Functional Description

The design consists of an error correct coding scheme coupled with a maximum run length limiting

scheme. There are two blocks, the encoder and the decoder. The data word size is 48 bits and there are 15

code bits and 1 pad bit for a total coded word size of 64 bits. The code rate is 0.75. The error correction

coding is a 2 error correcting primitive BCH code with a minimum distance of 5. It can detect and correct

all 1 and 2 bit error patterns in the 63 code bits (the pad bit is not protected). It can also detect some 3 or

more bit error patterns. The code will actually detect 99.976% of all error patterns, however since the

minimum distance is 5 and error correction is used, many error patterns beyond 2 bits will actually result in

the code making an invalid correction. The intended application for this error correction coding scheme is

in wired serial digital multi-gigabit communication systems where the distribution or errors is random.

Encoding Data Flow

Data comes in to the encoder in 48 bit words synchronous to and valid on the rising edge of block_clk_i.

There are two steps to the encoder, MRL encoding and BCH encoding. The operation of these blocks

occurs normally unless they are held in reset or they are disabled. Each block completes in 1 block_clk_i

clock cycle, so the encoder takes 2 block_clk_i clock cycles to encode data. After the initial 2 clock

latency, data is continuously coming out of the encoder.

 (51,48) MRL Encoder

After the first clock cycle the data will be encoded with the MRL block and three code bits will be

added to the data and the data will either be inverted or not inverted to minimize the running

disparity of 1s and 0s. The rules for the encoding are as follows. The MRL bits are labeled as

MRL<2:0>.

• If the running disparity is greater than or equal to 0

o If the disparity of the current 48 bit input data word is greater than or equal to 0,

then invert the data bits and set MRL<0,2> to 0

o Else leave the 48 bit input data word alone and set MRL<0,2> to 1

• Else if the running disparity is less than 0

o If the disparity of the current 48 bit input data word is greater than or equal to 0,

then leave the data bits alone and set MRL<0,2> to 1

o Else invert the data bits and set MRL<0,2> to 0

• Set MRL<1> to the inverse of MRL<2>

A running disparity register is maintained in the MRL block that is updated on every clock cycle.

A positive disparity indicates that more 1s than 0s have occurred and a negative disparity indicates

that more 0s than 1s have occurred. The running disparity is based on both the MRL coded data

and on the disparity of the BCH parity bits that have been added to the transmitted data after this

block. The disparity of the BCH parity bits is fed back to this block.

 142

• At reset Running Disparity is set to 0

• If the data has not been inverted

o Current Disparity = (1s Count of Input Data) – (48 – (1s Count of Input Data))

o Running Disparity = (Running Disparity) + (Current Disparity) + 1 + (ECC

Disparity)

• If the data has been inverted

o Current Disparity = (48 – (1s Count of Input Data)) – (1s count of Input Data)

o Running Disparity = (Running Disparity) + (Current Disparity) -1 + (ECC

Disparity)

• If the Running Disparity has overflowed the size of its register in the positive direction,

then set it to the maximum register size and set the disparity_overflow_o output bit to 1.

• Else if the Running Disparity has overflowed the size of its register in the negative

direction, then set it to the minimum register size and set the disparity_overflow_o output

bit to 1.

• Else set the disparity_overflow_o output bit to 0.

This MRL code provides a mechanism to limit the maximum run length of the output data to no

more than the encoded block size of 64 bits. It also provides a mechanism for controlling the

amount of disparity between 0s and 1s in transmitted data to limit the DC spectra content of the

data. There is no guaranteed limit on the running disparity though since the code adds an extra

transition bit and downstream the BCH coder adds 12 more unconstrained bits. The running

disparity register in the block is bounded to 8 bits in magnitude in either the positive or negative

direction so if the running disparity exceeds 255 or -255 the disparity_overflow_o output will be

asserted to alert user logic to the problem.

(63,51) BCH Encoder

This block implements the cyclic coding algorithm for a primitive binary (63,51) BCH code on the

51 bit data from the MRL encoder. The block computes the 12 parity bits for the encoded data

within a single block_clk_i clock cycle. It also computes the disparity between 1s and 0s in those

12 parity bits and passes that number back to the MRL block for use in maintaining the running

disparity within that clock cycle.

Data Format

The output data is valid when the data_valid_o signal is asserted. The format of the 64 bit output

data word is shown in the following table.

Bit

Position

63 62 61

59

58

35

34

32

31 30

28

27

4

3

1

0

Descriptio

n

Pad

Bit

MRL<

2>

C<11:9

>

Data<47:24> C<8:6> MRL<

1>

C<5:3> Data<23:0> C<2:0

>

MRL<

0>

Decoding Data Flow

Data comes in to the decoder in 64 bit words synchronous to and valid on the rising edge of block_clk_i.

There are two steps to the decoder, BCH decoding and MRL decoding. The operation of these blocks

occurs normally unless they are held in reset or they are disabled. The MRL block completes in 1

block_clk_i clock cycle. The BCH decoder takes 3 block_clk_i clock cycles. The decoder thus takes 4

 143

block_clk_i clock cycles to decode data. After the initial 4 clock latency, data is continuously coming out

of the decoder.

Data Format

The input data must be valid on the rising edge of block_clk_i and it must be in the following

format.

Bit

Position

63 62 61

59

58

35

34

32

31 30

28

27

4

3

1

0

Descriptio

n

Pad

Bit

MRL<

2>

C<11:9

>

Data<47:24> C<8:6> MRL<

1>

C<5:3> Data<23:0> C<2:0

>

MRL<

0>

(63,51) Decoder

This step takes 3 block_clk_i clock cycles to complete. The operation is pipelined by the

decoding steps which are syndrome computation, error location polynomial calculation, and error

search. The output after these three decoding stages is the 51 bit corrected data word and an

indication of the number of errors detected or corrected in the data. The error_cnt_o<1:0> value is

delayed by one clock cycle so that it matches up with the actual output data word from the decoder

which is delayed by one cycle for MRL decoding.

The (63,51) BCH code has a minimum distance of 5, so all error patterns up to 4 bits in length will

be detected. However since the code will attempt to correct all 1 and 2 error patterns, there is

some chance that some 3 or more input error patterns could be recognized as 2 input error patterns

and corrected wrongly. There is no way of knowing if this occurred or not. Some 3 or more input

error patterns will be detected correctly. If this code is used in an application where error

detection is important, then assume that if error_cnt_o<1:0> is 10 or 11 (2 or 3 or more errors

respectively) that there are errors in the received word and do not use it as valid data.

(51,48) MRL Decoder

This stage is very simple. It completes in a single clock cycle and the 48 bit data is output on the

rising edge of block_clk_i. The following rules define how this block operates.

• If MRL<2:0> = 010 then invert the data bits to decode them

• Else if MRL<2:0> = 101 then leave the data bits alone to decode them

• Else set the mrl_error_o signal to a 1 to indicate a decoding error

The MRL decoder provides one additional error correction check on the data. If the BCH decoder

incorrectly decoded a word but one of the MRL bits was made to be incorrect, the MRL decoder

could detect that and mark the entire data word as in error with the mrl_error_o signal.

Synchronization

In order to operate correctly in a communication system, the encoder and decoder must be synchronized.

There is no internal synchronization provided in the ECC block and this must be handled with additional

external logic. One possible means of synchronizing is waiting a fixed amount of time, checking for

normal data reception. If it doesn’t occur, stop the decoder for one symbol time and then start it again.

Repeat this process until normal data reception occurs. The decoder can be stopped by using the enable_in

input signal. Another means would be to use an external framer or synchronizer and only performing the

encoding / decoding on the data payload.

 144

Functional Timing

All the registers in the encoder and decoder block are clocked by the rising edge of block_clk_i. All inputs

except the asynchronous reset signal (reset_n_i) to the blocks must be valid for the rising edge and all

outputs from the blocks are output on the rising edge of this clock. The following table shows how the

various control signals for the encoder and decoder should be asserted and when valid output data will be

present from each

.

Clock Cycle # Signals

0 1 2 3 4 5 6 7 8

Common Signals

reset_n_i 0 1 1 1 1 1 1 1 1

Encoder Signals

enable_i 0 0 1 1 1 1 1 1 1

data_in_i X V V V V V V V V

pad_bit_i X V V V V V V V V

data_out_o X X X X V V V V V

Decoder Signals

enable_i 0 0 1 1 1 1 1 1 1

data_in_i X V V V V V V V V

pad_bit_i X V V V V V V V V

data_out_o X X X X X X V V V

pad_bit_o X X X X X X V V V

X = Don’t care or invalid data

V = Valid data or signal

The worse case timing path for the encoder is in the MRL encoding block. There is a lot of combinational

logic in this block to calculate the running disparity and then make a decision based on the current running

disparity and the accumulated running disparity as to which way to encode the data. This process could be

fairly easily pipelined to improve performance at the cost of extra latency. The worse case timing path for

the decoder is in the error search block. This is a very wide combinational logic block that must test every

single error position in the error polynomial and test for 0s by performing multiplication and addition. The

block must also then count the number of errors detected. This block could likely be pipelined between the

actual error search and error counting fairly easily at the cost of an additional stage of latency. For current

generation serial applications the performance of both blocks exceeds the serial data rate that the

transceivers support. The encoder can function with a serial data rate of up to 4.34 Gbps and the decoder

can function with a serial data rate of up to 6.74 Gbps. It may be possible to remove some of the pipelining

in the decoder design since there is so much slack beyond the maximum serial data rate to reduce the

latency below 4 clock cycles.

 145

Test Benches

There are block level test benches for the blocks and a top level test bench that thoroughly tests the error

correcting capabilities through the use of a bit error rate tester block.

Encoder Block Level Test Benches

There is one block level test bench for the encoder to simulate the functionality of the maximum run length

block. This test bench is contained in the file \encoder_block_sims\mrl_51_48_encoder_tb.vhd. This test

bench simply provides the clock and control signals, instantiates the MRL block of the encoder and sends a

data pattern through. The resulting MRL encoding must be manually checked. A Mathcad program exists

that implements the MRL encoding functionality for use in manual checking and is located at

\encoder_block_sims\mrl_48_51.mcd.

Decoder Block Level Test Benches

There are two simple decoder block level simulations located at

\decoder_block_sims\gf_2_6_inverter_tb.vhd and \decoder_block_sims\gf_2_6_mult_tb.vhd. The first one

simply goes through all the possible 6 bit GF(2
6
) patterns to force the block to display the inverse which

must be checked manually from a Galois Field table. The second one simply tries several different 6 bit

GF(2
6
) input values to the multiplier to force the block to display the result and then automatically checks

that it is correct.

Encoder and Decoder Block Level Simulation

The rest of the block level simulations are contained in a single file located at

\encoder_decoder_block_sim\bch_63_51_tb.vhd. This test bench creates the clock and control signals and

connects together all of the individual functional blocks of the encoder and decoder. It does not use the top

level vhdl files for either the encoder or decoder, but instead replicates that connectivity. The test bench

then inserts data into the encoder and also inserts errors into the data between the encoder and decoder.

The following things are automatically checked throughout the data path.

• The encoder parity bit generation

• The decoder syndrome computation

• The decoder error polynomial coefficient calculation

• The decoder output data

• The decoder output error count

The expected values hard coded in the test bench for all of these tests were manually calculated using a

Mathcad program model of the encoder and decoder.

High Level Bit Error Rate Test Simulation

The top level encoder and decoder blocks are instantiated and connected together in a single test bench

along with a bit error rate test pattern generator and bit error rate test receiver. This test bench is contained

in \encoder_decoder_bert_sim\encoder_decoder_bert_tb.vhd. The BERT pattern generator and receiver

blocks are other Plexus building blocks that have the ability to send and receive and count bit errors for

three different patterns including a 2
11

 – 1 PRBS, a 2
31

 – 1 PRBS, and a programmable data word pattern.

The purpose of this test bench is to give an overall stress to the encoder and decoder blocks and to gather

some information about its performance. The test bench connects the BERT pattern generator to the

encoder, then connects the encoder output data with or without errors inserted to the decoder, and then

connects the decoder output to the BERT receiver. The test bench also creates the necessary clock and

control signals. The following tests and self checks are performed.

 146

• All single and double bit error patterns are inserted into the receive data

• After single and double bit error insertion, the test bench automatically checks to be sure that the

BERT receiver did not detect any errors (they were all corrected)

• All three bit error patterns are inserted into the receive data

• The number of three bit error patterns that are inserted is counted (err_3_pattern_cnt)

• The number of three bit error patterns that are identified as three or more bit error patterns is

counted (err_3_detected_cnt)

• The receive pad bit is checked versus what is sent into the block

• The fact that bit errors are counted is checked after the three bit error pattern insertion is done (just

that there were errors, not the actual number is checked)

• The disparity_overflow_o flag is checked to make sure that it does not get asserted

All self checks in the test bench are done with assertions and ERROR or WARNING messages will be

printed in the simulation transcript window if any errors occur.

At the beginning of this test bench file is a package that contains constant definitions that control how some

of the tests work. The following table describes those constants.

Constant Description Default

Value

Stresses

BLOCK_CLK_PE

RIOD

The clock period for the word

clock (not important for

functional sims)

20 ns

ERR_CNT_SIZE 10

SYNC_LOSS_CN

T_SIZE

8

WORD_CNT_SIZ

E

64

SYNC_ERR_CN

T

12

UNSYNC_ERR_

CNT

1228

SYNC_WORDS

These constants map directly

to generics in the BERT

pattern generator and pattern

receiver

256

INVERT_DATA Specifies the state of the

invert_data_i signal to the

BERT pattern generator and

receiver (1=invert data pattern,

0=don’t invert)

0

DATA_WORD
The constant data word to use

in the word pattern test

A5BFC8E14

729

Try patterns that will cause the

MRL running disparity register to

overflow.

PRBS_2_11_SEE

D

The value to be connected to

prbs_2_11_seed_i of the

BERT pattern generator

00000000001

 147

Constant Description Default

Value

Stresses

PRBS_2_31_SEE

D

The value to be connected to

prbs_2_31_seed_i of the

BERT pattern generator

00000000000

00000000000

000000001

TEST_DURATIO

N

The value to be connected to

the max_word_cnt_i signal on

the BERT receiver

0x270000

TIME_BETWEE

N_ERRORS

The number of clock cycles to

wait between error insertions

10

BERT_PATTERN

Selects which pattern to the

BERT blocks should use

00 for Word,

01 for PRBS

2
11

 – 1, or 10

for 2
31

 – 1

DISPARITY_RE

G_SIZE

Sets the size of the running

disparity register in the MRL

encoder.

9 Set this to a smaller value such as 5

so that disparity overflows will

occur.

 148

10 Appendix B – BERT Block Datasheet

Bit Error Rate Test Block Datasheet

Document Number: 9132.041

EC/Revision: Rev 1.1

Revision Date: March 7, 2005

Author: David Carney

Features:

• Supports variable length data

word sizes from 8 bits to 64 bits

• Supports 2
11

 – 1 and 2
31

 -1 PRBS

data patterns

• Supports constant data word data

pattern

• Receive block automatically

synchronizes to the data pattern and

then counts bit errors

Description:

The core consists of two separate blocks, the BERT pattern

generator and the BERT receiver. The pattern generator

provides a variable width output data word based on the

selected data pattern. The receiver synchronizes to the

selected data pattern and once synchronized counts bit errors

between the received data and the expected data. The core is

written in VHDL.

Required VHDL Files

Hierarchy:

bert_pattern_gen.vhd

 prbs_generator.vhd

bert_receiver.vhd

 bert_receiver_control.vhd

 prbs_generator.vhd

 word_compare.vhd

Required Libraries:

use ieee.std_logic_arith.all; (standard VHDL library)

use ieee.std_logic_unsigned.all; (standard VHDL library)

use ieee.std_logic_1164.all; (standard VHDL library)

 149

Pattern Generator Description

Pattern Generator Functional Diagram:

 150

Pattern Generator Timing:

Block Parameters Chip Speed

Grade

Package Area Speed

(MHz)

WORD_SIZE = 48 Altera Stratix GX

(EP1SGX25FF1020)

5 1020 pin

BGA

321 LCs

282 LC Registers

422.12

WORD_SIZE = 8 Altera Stratix GX

(EP1SGX25FF1020)

5 1020 pin

BGA

87 LCs

82 LC Registers

422.12

WORD_SIZE = 64 Altera Stratix GX

(EP1SGX25FF1020)

5 1020 pin

BGA

428 LCs

362 LC Registers

422.12

Pattern Generator Parameters:

Generic Default Value Description

WORD_SIZE 48 Integer that determines how many bits are in the output data block.

Valid range for this parameter is between 8 and 64.

 151

Pattern Generator Input/Output Descriptions:

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

word_clk_i std_logic NA NA I Clock used by the block. A new output

data word is output on every rising edge

of this clock.

reset_n_i std_logic NA NA I Reset signal for the core (0=reset state,

1=out of reset). This input is

asynchronous.

invert_data_i std_logic NA NA I Selects whether or not to invert the

pattern data to be output (1=inverted,

0=not inverted).

enable_i std_logic This input enables the PRBS generators

and the output register (1=enabled,

0=disabled)

pattern_select_

i

std_logic_vector 1 0 I Selects the pattern to be captured into

the output data register.

00=Data word

01=PRBS 2
11

 – 1

10=PRBS 2
31

 – 1

11=Data word

This input is sampled every clock cycle

and will select the corresponding pattern

output.

prbs_2_11_see

d_i

std_logic_vector 10 0 I The value to seed the 11 LFSR stages

with of the PRBS 2
11

 – 1 pattern

generator. By default out of reset, the

generator is seeding with:

000 0000 0001

load_2_11_see

d_i

std_logic NA NA I When this signal is active high, the

PRBS 2
11

 – 1 pattern generator LFSR is

loaded with the bits on the

prbs_2_11_seed_i signal. If the pattern

was being generated when this happens,

it will start over at the new seed.

prbs_2_31_see

d_i

std_logic_vector 30 0 I The value to seed the 31 LFSR stages

with for the PRBS 2
31

 – 1 pattern

generator. By default out of reset, the

generator is seeding with:

0x00000001

load_2_31_see

d_i

std_logic NA NA I When this signal is active high, the

PRBS 2
31

 – 1 pattern generator LFSR is

loaded with the bits on the

prbs_2_31_seed_i signal. If the pattern

was being generated when this happens,

it will start over at the new seed.

 152

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

data_word_i std_logic_vector X 0 I The value for the constant data output

word pattern.

load_word_i std_logic NA NA I When this signal is active high, the value

on data_word_i is latched into the data

word register on the rising edge of

word_clk_i.

bert_data_o std_logic_vector X 0 O The output data word from the pattern

generator. The data is in order from

most significant bit (MSb) to least

significant bit (LSb). In a serial

application the MSb should be

transmitted first.

X = WORD_SIZE - 1

Pattern Generator Input Truth Table:

n_reset_i enable_i pattern_select_i

<1:0>

Core State

0 0 XX The pattern generator is in reset, and bert_data_o is all

zeros. All internal registers are also set to all zeros.

1 0 XX Output disabled – Core disabled meaning no data is

latched in to the output stage register and the LRSRs are

not shifted.

1 1 01 The PRBS 2
11

 – 1 pattern is selected and is being

generated. On each subsequent rising edge of word_clk_i

the next pattern word will be output.

1 1 10 The PRBS 2
31

 – 1 pattern is selected and is being

generated. On each subsequent rising edge of word_clk_i

the next pattern word will be output.

1 1 00 or 11 The data word pattern is selected and will be output on

each rising edge of word_ckl_i.

 153

Bit-Error-Rate-Test Receiver Description

Bit-Error-Rate-Test Receiver Functional Diagram:

 154

Bit-Error-Rate-Test Receiver Timing:

Block Parameters Chip Speed

Grade

Package Area Speed

(MHz)

WORD_SIZE = 48

OTHERS = default

Altera Stratix GX

(EP1SGX25FF1020)

5 1020 pin

BGA

1679 LCs

727 LC Registers

103.73

WORD_SIZE = 8

OTHERS = default

Altera Stratix GX

(EP1SGX25FF1020)

5 1020 pin

BGA

908 LCs

279 LC Registers

126.25

WORD_SIZE = 64

OTHERS = default

Altera Stratix GX

(EP1SGX25FF1020)

5 1020 pin

BGA

2091 LCs

907 LC Registers

109.39

WORD_SIZE=16,

USE_PRBS_2_31

= FALSE,

USE_PROG_WOR

D = FALSE,

OTHERS = default

Altera Stratix GX

(EP1SGX25FF1020)

7 1020 pin

BGA

526 LCs

272 LC Registers

107.48

Bit-Error-Rate-Test Receiver Parameters:

Generic Default

Value

Description

WORD_SIZE 48 Integer that determines how many bits are in the input data

word. Valid range for this parameter is 8 to 64 bits.

ERR_CNT_SIZE 8 Integer that determines how many bits are in the error count

counter. Valid range for this parameter is 8 to 31 bits.

SYNC_LOSS_CNT_SIZE 8 Integer that determines how many bits are in the

synchronization loss counter. Only synthesis restriction on this

parameter.

WORD_CNT_SIZE 64 Integer that determines how many bits are in the received word

counter. Only synthesis restriction on this parameter.

SYNC_ERR_CNT 12 Integer number for the maximum number of errors that can

occur over a specified number of words (SYNC_WORDS) for

synchronization to occur. If more errors than this occur, the

block will continue trying to synchronize. Only synthesis

restriction on this parameter.

UNSYNC_ERR_CNT 1228 Integer number for the maximum number of errors that can

occur over a specified number of words (SYNC_WORDS) for

synchronization to be maintained. If more errors than this

occur, the block will lose synchronization and will then try to

resynchronize. Only synthesis restriction on this parameter.

SYNC_WORDS 256 Integer number for the number of words to count errors over to

determine synchronization state. Only synthesis restriction on

this parameter.

 155

Generic Default

Value

Description

USE_PRBS_2_11 TRUE Boolean value that specifies whether logic for the PRBS 2
11

 – 1

pattern will be instantiated with a conditional compile. The

purpose of this is to allow the block to be smaller for cases

where only certain patterns are needed. It is important that if

this is set to FALSE that the PRBS 2
11

 – 1 pattern not be

selected, because if it is the block will not function correctly.

The synthesis tool will not flag an error.

USE_PRBS_2_31 TRUE Boolean value that specifies whether logic for the PRBS 2
31

 – 1

pattern will be instantiated with a conditional compile. The

purpose of this is to allow the block to be smaller for cases

where only certain patterns are needed. It is important that if

this is set to FALSE that the PRBS 2
31

 – 1 pattern not be

selected, because if it is the block will not function correctly.

The synthesis tool will not flag an error.

USE_PROG_WORD TRUE Boolean value that specifies whether logic for the

programmable word pattern will be instantiated with a

conditional compile. The purpose of this is to allow the block

to be smaller for cases where only certain patterns are needed.

It is important that if this is set to FALSE that the

programmable word pattern not be selected, because if it is the

block will not function correctly. The synthesis tool will not

flag an error.

Bit-Error-Rate-Test Receiver Input/Output Descriptions:

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

word_clk_i std_logic NA NA I Clock used by the block. A new input

data word is captured by the block on

every rising edge of this clock.

reset_n_i std_logic NA NA I Reset signal for the core (0=reset state,

1=out of reset). This input is

asynchronous.

enable_i std_logic NA NA I When asserted high, causes the input

data word to be captured on the rising

edge of word_clk_i and allows all other

logic in the block to function

(1=enabled, 0=disabled).

invert_data_i std_logic NA NA I Selects whether or not to invert the input

pattern data before processing

(1=inverted, 0=not inverted).

 156

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

pattern_select_

i

std_logic_vector 1 0 I Selects the pattern to be synchronized to

and bit errors counted for after

synchronization.

00=Data word

01=PRBS 2
11

 – 1

10=PRBS 2
31

 – 1

11=Data word

resync_i std_logic NA NA I When asserted active high causes the

block to resynchronize to the data. This

will not reset the word count and error

count registers though and once

synchronization occurs, they will

continue counting from their current

state.

data_word_i std_logic_vector X 0 I The value for the constant data input

word pattern.

bert_data_i std_logic_vector X 0 I The word input data to be error checked.

This data must be valid on the rising

edge of word_clk_i. The data is

assumed to be in most significant bit

(MSb) to least significant bit (LSb)

transmission order to match the BERT

pattern generator.

run_forever_i std_logic I Specifies whether the test will be

conducted for a finite word count or will

be conducted open-ended forever.

0 = run to max_word_count_i

1 = run open-ended

max_word_co

unt_i

std_logic_vector Z 0 I Specifies the word count value that

when reached will stop the test if

run_forever_i is set to 0.

sync_loss_cnt

_o

std_logic_vector W 0 O Output to indicate how many times the

block has lost synchronization during a

test. This output is updated on the rising

edge of word_clk_i.

err_cnt_o std_logic_vector Y 0 O Counter output that indicates how many

bit errors have been counted during the

test. This output is updated on the rising

edge of word_clk_i. If the error counter

overflows, this value will wrap around,

but the err_cnt_overflow_o signal will

be asserted.

err_cnt_overfl

ow_o

std_logic NA NA O If the error counter output overflows,

this signal will be set to a 1 on the

word_clk_i cycle that the overflow

occurred. This output is updated on the

rising edge of word_clk_i.

 157

Signal Name Signal Type Vector Range IO Description

 Vector

high

(MSB)

Vector

low

(LSB)

word_cnt_o std_logic_vector Z 0 O Counter output that specifies how many

words have been tested for bit errors.

The word counter will start at 0 after

synchronization occurs and will

increment by 1 on each word_clk_i

rising edge that the block is enabled until

the counter reaches max_word_count_i.

test_done_o std_logic NA NA O Output that indicates that the

word_cnt_o counter has reached

max_word_count_i (1=counter reached,

0=counter not yet reached). This signal

is updated on the rising edge of

word_clk_i. After this signal is asserted,

the test will stop, and the block must be

reset to conduct another test.

W = SYNC_LOSS_CNT_SIZE - 1

X = WORD_SIZE – 1

Y = ERR_CNT_SIZE – 1

Z = WORD_CNT_SIZE – 1

Bit-Error-Rate-Test Receiver Input Truth Table:

n_reset

_in

enable_

in

pattern_

select_i<

1:0>

Core State

0 X XX The BERT receiver is in reset. err_cnt_o is set to 0, sync_loss_cnt_o

is set to 0, word_cnt_o is set to 0, and all output status signals are set

to the inactive state. All internal registers are also set to their default

states.

1 0 XX Disabled - Core disabled meaning no data is latched in from the

bert_data_i signal, the internal pattern generators are not updated, and

no error checking or word counting occurs. When the core is once

again enabled, it will continue operating where it left off. If it was

synchronized before being disabled it may need to resynchronize.

1 1 00 or 11 The data word pattern is selected for synchronization and error

detection.

1 1 01 PRBS 2
11

 – 1 pattern selected for synchronization and error detection.

1 1 10 PRBS 2
31

 – 1 pattern selected for synchronization and error detection.

 158

Background

For detailed background information on performing BERT in serial digital multi gigabit communication

systems, refer to section 4.

Functional Description

The functional description of the pattern generator and the receiver of the bit-error-rate-test block is

described in this section. A description of the patterns that are generated and tested in this BERT block are

given in the following table.

Pattern Length (bits) Length in

Time for

3.125 Gbps

Generator

Polynomial for

LFSR

Max 0s

Run

(bits)

Max 1s

Run

(bits)

Programmable Word 8 – 64 bits 2.56 ns –

20.48 ns

NA 64 64

2
11

 – 1 PRBS 2047 655.04 ns X
11

 + X
9
 + 1 10 11

2
31

 – 1 PRBS 2,147,483,647 687.2 ms X
31

 + X
28

 + 1 30 31

Pattern Generator Data Flow

The pattern generator block contains three separate pattern generators which are the 2
11

 – 1 PRBS

generator, the 2
31

 – 1 PRBS generator and the data word generator. The two PRBS generators are very

similar and are implemented using LFSRs as shown in the following figures.

b0 b1 b2

+

b8 b9 b10
Data Out

Figure - LFSR Implementation for 2
11

 - 1 PRBS Generator

b0 b1 b2

+

b28 b29 b30
Data Out

b27

Figure - LFSR Implementation for 2
31

 - 1 PRBS Generator

The LFSRs are implemented using combinational logic to shift them WORD_SIZE times per word_clk_i

clock cycle. These LFSRs are based on the polynomial for each pattern shown in the following table. The

LFSRs produce repeating bit patterns and they can be started at any point in the repeating pattern by

loading a seed value into the LFSR register bits. This is done using the seed inputs to the block and

asserting the corresponding seed load signals.

The programmable data word is simply generated by a register in the block that captures an input data word

when the load_word_i signal is asserted. It is possible to have the pattern generator generate any desired

pattern by providing a new word on each word_clk_i cycle.

The next stage of the pattern generator is the selection of the pattern to be transmitted through the mux

using the pattern_select_i signal.

 159

After the mux is a selectable inverter that allows the pattern to be inverted or not using the invert_data_i

signal.

The final stage is the selected pattern is captured into an output register.

If only a single PRBS pattern is needed, some logic overhead can be eliminated by simply instantiating the

PRBS generator block (prbs_generator.vhd). The inputs and outputs for this block are described in the

comments in the source code.

Receiver Data Flow

The first stage of the receiver data flow is the selectable inverter which inverts the data coming in if the

invert_data_i signal is asserted.

The next stage of the receiver data flow is the input buffer. The buffer is 6 words long to allow for enough

bits to be captured to seed the 2
31

 – 1 PRBS generator within the receiver that is used for generating the

expected data. The first 4 words contain at least 32 bits since the minimum data word size is 8 bits. The

next 2 words in the buffer are used to save the data for long enough to make the comparison with the output

from the PRBS generator. A block diagram of the buffer is shown in the following figure.

reset_n_i

Buffer
Stage 1

bert_data<x:0>

buf_data<2x+1:x+1>

word_clk_i

Buffer
Stage 2

enable_i

buf_data<x:0>

Buffer
Stage 3

Buffer
Stage 4

buf_data<3x+2:2x+2>

buf_data<4x+3:3x+3>

Buffer
Stage 5

Buffer
Stage 6

buf_data<6x+5:5x+5>

buf_data<5x+4:4x+4>

Figure - Pattern Receiver Input Buffer Block Diagram

The last stage of the receiver data flow after synchronization has taken place is the comparison of the

received data with the expected data and the counting of the bit errors. The number of bit errors for the

selected pattern is then added to the current value in the error counter and the result is captured in the

output register. Also after each comparison, the word count register is incremented by one. The

comparison is made directly with the data word in the third stage of the buffer for the PRBS patterns. In

the synchronization of the programmable word pattern, the starting index in the buffer is determined for

where the word is lined up in the buffer. The comparison is made bit by bit starting at the starting index

and continuing for all of the bits in the word.

The synchronization and the error counting stages are controlled by the Synchronization and BERT control

block. This block contains a state machine that controls the appropriate enables and outputs. A high level

flow for how the synchronization block works after coming out of reset is given in the following table.

 160

Step Description for PRBS Patterns Description for Programmable Word Pattern

1 Wait two clock cycles for the data buffer to be filled up

2 If the selected pattern is a PRBS pattern,

then assert the appropriate load signal and

enable signal for the selected PRBS pattern

generator. The received data is loaded into

the appropriate PRBS generator as a seed

value.

If the selected pattern is the programmable word

pattern, then increment the word buffer index by

one starting from 0 and continuing until X (wrap

back to 0)

3 Add the error count value for the selected pattern to an accumulator starting at 0.

4 Goto step 3 (repeat SYNC_WORDS number of times)

5 If the error count accumulator is less than SYNC_ERR_CNT then go to step 6 else go back to step

2.

6 Assert the synchronization status output, turn on the enables for the error counter and the word

counter, and set the select lines for the error count mux to select the correct error count value.

7 Add the error count value for the selected pattern to an accumulator starting at 0.

8 Goto step 7 (repeat SYNC_WORDS number of times)

9 If the error count accumulator is greater than UNSYNC_ERR_CNT then deassert the

synchronization status output, disable the error counter and word counter and go to step 2.

Otherwise go back to step 7.

The synchronization algorithm will search for synchronization at startup by ensuring that the bit error rate

is below a certain threshold defined by the following equation.

BLOCKSSYNCSIZEBLOCK

CNTERRSYNC
BER

__

__

×
=

 It will then continuously monitor the synchronization status and if the bit error rate increases above the

threshold defined by the following equation, assumes that synchronization has been lost and then again

tries to resynchronize.

BLOCKSSYNCSIZEBLOCK

CNTERRUNSYNC
BER

__

__

×
=

If the value of SYNC_ERR_CNT is set lower than UNSYNC_ERR_CNT there is hysteresis built into the

synchronization so the block will not jump in and out of synchronization when the channel gets noisy.

If the test continues until the word_cnt_o value reaches the max_word_cnt_i value, then the test will stop

and the test_done_o bit will be asserted. The BERT receiver block will not do anything more until it is

reset.

Functional Timing

All input signals in the design are captured on the rising edge of word_clk_i and all output signals in the

design clocked out on the rising edge of word_clk_i. All actions in response to input signals will occur on

the first rising edge that the signal is valid for except the reset_n_i signal which is asynchronous.

There are no real restrictions on the relative timings of input control signals to the block. A reasonable

order of operations for a design including both the pattern generator and the bert receiver is given in the

following table.

 161

Clock Cycle # Signals

0 1 2 3 4 5 6 7 8

Common Signals

reset_n_i 0 1 1 1 1 1 1 1 1

invert_data_i X X I I I I I I I

Pattern Generator Signals

pattern_select_i 11 11 11 PQ PQ PQ PQ PQ PQ

prbs_2_11_seed_i X X V X X X X X X

load_2_11_seed_i 0 0 1 0 0 0 0 0 0

prbs_2_31_seed_i X X V X X X X X X

load_2_31_seed_i 0 0 1 0 0 0 0 0 0

data_word_i X X V X X X X X X

load_word_i 0 0 1 0 0 0 0 0 0

bert_data_o 0s 0s 0s 0s V V V V V

Receiver Signals

enable_i 0 0 0 1 1 1 1 1 1

pattern_select_i 11 11 11 PQ PQ PQ PQ PQ PQ

max_word_count_i X X X V V V V V V

data_word_i X X V V V V V V V

X = Don’t care

V = Valid data or signal

I = 0 or 1

PQ = 00 for Programmable word, 01 for PRBS 2
11

 – 1, or 10 for 2
31

 – 1

The pattern generator can function at very high rates for any valid data word size between 8 and 64 bits.

For the Altera Stratix GX device, the pattern generator can function at the highest allowable internal clock

frequency. The bert receiver is much more limited in performance however. As the word size increases

the maximum operating frequency decreases, but not as fast as the effective data rate increases. For multi-

gigabit data rates, a word size of 32 bits or higher may be required.

The worst case timing path in the pattern receiver is for the data word pattern. To improve the timing of

the design, an architecture change would need to be made to the synchronization design for the word

pattern. Instead of searching through two input data word buffer stages for the start of the programmable

word the receiver could be designed to just look in the first input data word buffer stage and have some

external logic synchronize the incoming data so that it lines up in that stage. The receiver could output a

“bit_slip” signal that could trigger the external logic to slip the data by 1 bit using a barrel shifter. When

using this receiver in a multi-gigabit serial application, the Xilinx and Atlera transceivers support this bit

slip functionality.

 162

Test Benches

The test bench for the bert pattern generator and bert receiver is contained in the file bert_tb.vhd. This test

bench instantiates the bert pattern generator block and the bert receiver block and generates the word_clk_i

signal and all of the necessary control signals. The test bench then monitors the output signals and provides

self checking with assertions. Any simulation errors will appear in the simulation transcript window.

There are two main parts to the bert_tb.vhd file, a package section to define constants, and the main test

bench entity and architecture. There are three separate packages defined, one for each of the three data

patterns. The packages are defined first in the file and then the package for the desired test is selected with

a “use” statement. This must be manually edited to switch between tests. To conduct a test, initiate the

corresponding .do script from within Modelsim for each type of pattern (bert_tb_word.do,

bert_tb_prbs_2_11.do, or bert_tb_prbs_2_31.do). The script will set up the simulation, set up the

waveform window, and conduct the simulation for an appropriate amount of time for each type of test.

Package Constants

The following table lists all of the constants defined in the packages and what they are for. Also listed are

values for the constants that can be used to stress the design.

Constant Description Default

Value

Stresses

WORD_CLK_PE

RIOD

The clock period for the word

clock (not important for

functional sims)

20 ns

WORD_SIZE 48

ERR_CNT_SIZE 10 Use a smaller value such as 8 to

cause a small enough register size

to cause overflows in the errors

counted

SYNC_LOSS_CN

T_SIZE

8

WORD_CNT_SIZ

E

64

SYNC_ERR_CN

T

Word = 2,

PRBS = 12

UNSYNC_ERR_

CNT

Word = 20,

PRBS = 1228

SYNC_WORDS

These constants map directly

to generics in the pattern

generator and pattern receiver

Word = 10,

PRBS = 256

INVERT_DATA Specifies the state of the

invert_data_i signal to each

block

0

DATA_WORD

The constant data word to use

in the word pattern test

48 bits =

AA55FF0055

AA

8 bits = A5

64 BITS =

00A0000F00

005040

Try patterns that have symmetry to

cause the receiver to synchronize at

the wrong place.

 163

Constant Description Default

Value

Stresses

PRBS_2_11_SEE

D

The value to be connected to

prbs_2_11_seed_i of pattern

generator

00000000001

PRBS_2_31_SEE

D

The value to be connected to

prbs_2_31_seed_i of pattern

generator

00000000000

00000000000

000000001

TEST_DURATIO

N The value to be connected to

the max_word_cnt_i signal on

the bert receiver

Word pattern

= FFF

PRBS

patterns =

30000

ERRORS_TO_IN

SERT

Number of bit errors to insert

into the data. The errors are

inserted one per block until

this number of errors is

reached.

400 Choose value that results in sync

loss and verify that sync loss

occurs. This may need to be

changed in conjunction with the

sync parameters.

ERROR_BURST If set to a 1, the test will insert

a single error burst to cause a

loss of sync and automatically

check for that loss of sync

1 Set to 0 to test the error counting

functionality in the bert receiver.

TIME_BETWEE

N_ERRORS

If errors are to be inserted into

the data, they are inserted 1

per word and spaced apart by

this many words.

250

DELAY_TO_BU

RST_ERROR
The amount of clock cycles to

delay after synchronization

occurs before the error burst is

sent.

800 Adjusting this value can cause the

error burst to line up with the sync

check in the bert receiver such that

not enough errors are present for a

loss of sync.

TEST_PATTERN

Selects which pattern to test

00 for Word,

01 for PRBS

2
11

 – 1, or 10

for 2
31

 – 1

TRANSMIT_EN

ABLE_DELAY

Number of clock cycles to

delay from reset to enabling

the transmitter

10

RECEIVE_ENAB

LE_DELAY

Number of clock cycles to

delay from reset to enabling

the receiver

20

DISABLE_RECE

IVER_DELAY

The number of clock cycles to

disable the receiver for during

the test. If set to 0, the

receiver will not be disabled.

0 Set to a positive number and verify

that the receiver behaves as

expected while being disabled.

LOAD_WORD_D

ELAY

The number of clock cycles to

wait before loading the

programmable word in the

30

 164

Constant Description Default

Value

Stresses

pattern generator

TRANSMIT_DEL

AY

There is a buffer delay on the

data transmitted from the bert

pattern generator, to the data

received at the bert receiver.

This number specifies the

number of clock cycles for

that delay.

10 (Valid

range is 0 to

WORD_SIZE

– 1)

Change this value to watch the

programmable word pattern be

synchronized to at different

indexes.

TEST_TIMEOUT Maximum number of clock

cycles to wait after the test

bench counter reaches

TEST_DURATION while

checking for a test_done_o

assertion by the bert receiver.

If this counter expires without

seeing a test_done_o assertion,

an error is reported.

10000

SYNC_TIMEOU

T
The amount of time to wait

before checking to see if initial

synchronization occurred

Defined by

other

constants, do

not change.

Self Checking

The test bench contains self checking functionality. The following is a list of things that are checked.

• Initial synchronization occurs within a reasonable amount of time

• The number of errors counted matches the number inserted (when no burst error insertion is

present)

• The number of errors counted is larger than the number inserted (when burst error insertion is

present)

• That the test stops at the maximum word count

• That the synchronization is lost after initial synchronization when a burst error insertion is present

• That the error count overflow output bit is asserted when the error counter overflows and that it is

deasserted when there is no overflow

 165

The following table contains all of the error messages and their possible causes.

ERROR Message Reason Manual Checks

ERROR - initial

synchronization did not

occur as expected

The initial synchronization did

not occur within the specified

time frame.

Verify whether synchronization ever

occurred and if not determine why. If it

did determine if the expected time frame

for it to occur was accurate

ERROR - errors counted

did not match errors

inserted

When a burst error was not

present, the number of errors

counted did not match the number

inserted.

If the number of errors inserted was

enough to cause a loss of

synchronization, this error may occur in

which case a manual check would be

required. Another possible cause is an

error count register size that is too small

to count the number of errors inserted

causing the counter to overflow.

ERROR - too few errors

counted with burst error

present

When a burst error was present,

the number of errors counted was

not larger than the number of

single errors inserted.

Check to make sure the error counter did

not overflow.

ERROR - test did not stop

at max word count

The test did not complete in the

expected amount of time

Check where the word_cnt signal is it

and if it is incrementing. If so, then it

may just be that with the setup

parameters, the test is taking longer than

expected. Try increasing the value of

TEST_TIMEOUT.

ERROR - Expected loss

of sync, but it did not

occur

The error burst did not cause a

loss of sync.

It is possible that the error burst lined up

with the synchronization checking state

machine such that not enough errors

were detected to cause a loss of

synchronization. Try changing

DELAY_TO_BURST_ERROR

constant.

ERROR - Did not get

expected

err_cnt_overflow

indication

The error counter overflowed but

the overflow output bit was not

asserted

There’s no valid reason to see this error

so a design error is implied

ERROR - Got unexpected

err_cnt_overflow

indication

The overflow output bit was

asserted but the error counter did

not overflow

There no valid reason to see this error so

a design error is implied

 166

Engineering Project Report Approval Form

MASTER OF SCIENCE - ENGINEERING Milwaukee School of Engineering

This report, for the project titled ___CODING AND BIT-ERROR-RATE-TEST

BLOCKS FOR A SERIAL DIGITAL MULTI-GIGABIT COMMUNICATION

SYSTEM__,

submitted by the student ___David T. Carney____________,

has been approved by the following committee:

Faculty Advisor: __________________________________ Date: __________________

Faculty Member: __________________________________ Date: __________________

Faculty Member: __________________________________ Date: __________________

