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Abstract 

The project involves serial digital multi-gigabit communication systems that are 

emerging for use in chip-to-chip applications in digital systems.  These systems 

communicate data using very high speed point-to-point serial links in a switch fabric 

architecture between processors and peripherals in digital systems.  The major purpose of 

this project is to develop two reusable building blocks for use on projects containing 

serial digital multi-gigabit communication systems.  The reusable building blocks are an 

error correcting code (ECC) encoder and decoder appropriate for these systems and a bit-

error-rate tester (BERT).  Both of these building blocks are designed using digital logic in 

Very High Speed Integrated Circuit Hardware Description Language (VHDL) to be 

implemented in a field programmable gate array (FPGA) that contains multi-gigabit 

serial transceivers. 

The project includes a detailed investigation of serial digital multi-gigabit 

communication systems that was required to determine an appropriate ECC design.  

Elements of the investigation include the communication channel and bandwidth, random 

and deterministic noise sources and effects, characteristics of the transmitted data, and a 

comparison of different types of ECCs.  The ECC designed in this project consisted of a 

maximum run length code stage inside of a 2-error correcting primitive BCH code.  The 

overall code word size is 63 bits, the data word size is 48 bits, and a single padding bit is 

added to make the code word size 64 bits.  A detailed description of the logic design for 

this code is provided. 

The project also includes some investigation into bit-error-rate test 

methodologies.  Some information on the statistical nature of bit-error-rate measurements 

is developed as well as discussion of different types of data patterns.  Three bit-error-rate 

test patterns are implemented in the BERT block and they are a programmable data word 

pattern, a 2
11

 – 1 pseudorandom bit sequence (PRBS) pattern, and a 2
31

 – 1 PRBS pattern.  

A detailed description of the logic design for the BERT block is provided.  The design of 

the BERT block is efficient enough to support data rates up to the maximum of the Altera 

Stratix GX FPGA. 

In the project, the ECC block is implemented in an Altera Stratix GX FPGA.  The 

BERT block is used as the data source and also to measure the bit error rate.  The bit 

error rate performance is compared for the coded data and uncoded data running at 

approximately the information data rate of the coded data.  Two physical channels are 

used in the comparison, one 10-inch backplane channel and one 40-inch backplane 

channel.  The ECC block design of this project is not effective in the 40-inch backplane 

channel and results in a higher bit error rate than uncoded data.  The ECC block is 

effective in the 10-inch backplane channel, but the bit error rate without coding is already 

much lower than the target rate.  The test results indicate that the ECC block may be 

more effective when used with equalization.  They also indicate that a code with similar 

error correcting capabilities but a higher code rate may also improve performance, but 

detailed investigation of this is left as future work. 
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1 Introduction 

The project is to design and implement error correction coding (ECC) and bit 

error rate test (BERT) functional blocks for a serial digital multi-gigabit communication 

system
1
.  In recent years there has been a proliferation of fast serial protocols for 

interconnection in digital systems between chips within boards, across backplanes, and 

through cables.  Some examples are PCI Express, Serial RapidIO, XAUI, and Infiniband 

[1].  There are two purposes for this project.  The first is to increase at Plexus the 

knowledge and understanding of digital data communications as applied to these types of 

serial digital interconnections that are becoming common.  The second is to develop ECC 

and BERT functional blocks that can be reused in future designs to shorten the product 

development cycle. 

1.1 General Background 

The emerging serial digital multi-gigabit communication systems are the result of 

the evolution of the digital bus architecture from asynchronous to synchronous to source-

synchronous and then to serial.  A description of each of these types of digital bus 

architectures is given in section 2.  These systems have some common characteristics 

with each other especially in the area of digital signaling technology.  The signaling is 

typically baseband pulse-code modulation (PCM) in a nonreturn-to-zero level (NRZ-L) 

format.  A typical system block diagram for chip-to-chip communications using serial 

                                                 

1
 High-speed digital communication links or systems operating at rates above one gigabit per 

second are referred to herein as multi-gigabit communication systems. 
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digital multi-gigabit communications is shown in Figure 1.  In the system, data and 

commands can be passed between devices through the switch fabric.  The data can be 

passed directly between Input/Output (IO) devices through the switch fabric without 

being delayed by transfers to and from the CPU, and without limiting the CPU 

throughput to other IO devices. 
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Figure 1 - Typical digital system block diagram for systems using serial digital multi-gigabit 

communications. 

The connections are made by serial links and may actually consist of multiple 

serial links, operating in parallel, in each direction.  The XAUI standard for example uses 

four independent serial links, each operating at 3.125 Gbps, for a total rate of 12.5 Gbps.  

The XAUI standard uses 8B/10B coding to assure DC balance so the effective data rate is 

10 Gbps [2]. 

The digital signaling used is similar in format to the older synchronous bus 

architectures such as Peripheral Component Interconnect (PCI), but in order to operate at 
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the high data rates differential signaling is now commonly used in serial digital multi-

gigabit communication systems [2] [3] [4] [5].  The type of buffer commonly used is 

Current Mode Logic (CML) and this is the type of signaling that is supported by both 

Xilinx and Altera devices [6] [7]. 

The transmission channel consists of several elements that connect the differential 

transmitters on one IC to the differential receivers on another IC.  These elements include 

the connection from the die of the IC to the board referred to as the package connection, 

the connections called vias in the printed circuit board, used to transition between routing 

layers, the traces in the printed circuit board, and the connectors and cables used to 

connect printed circuit boards together.  For the system shown in Figure 1 the worst-case 

transmission channel is from the IC on an IO card to the switch fabric IC on the 

controller card.  This will be the transmission channel that will be discussed throughout 

this project report.  A block diagram of this transmission channel is shown in Figure 2.  

The transmission channel for each serial link consists of two connections, one for each 

end of the differential pair (positive and negative).  In addition, not shown in the diagram 

is that the signals on each end of the differential pair propagate between that pair and a 

reference return plane.  Throughout the channel, it is assumed that the traces are far 

enough apart that there is little coupling between them and they can be referred to as a 

loosely coupled differential pair.   

The primary advantages of differential signaling in a printed circuit board (PCB) 

transmission channel are immunity to power and ground noise, reduction of and 

immunity to simultaneous switching noise, and lower emissions.  As long as the 

differential outputs are well balanced and the loads seen by each signal in the pair are 
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symmetrical, the degree of coupling does not have much effect on these advantages.  A 

secondary benefit of differential signaling in printed circuit board routing is that of 

immunity to crosstalk from nearby neighbors since the crosstalk will affect both traces in 

the pair.  Tighter coupled differential pairs would have slightly more immunity to 

crosstalk and take up less space because the traces are closer together.  The disadvantages 

of tighter coupling are smaller trace widths required to achieve the same characteristic 

impedance that make skin effect loss worse, and impedance discontinuities caused when 

the traces break apart to go around obstacles such as vias.  The disadvantages usually 

outweigh the advantages especially at multi-gigabit data rates where high frequency loss 

and reflections off impedance discontinuities are concerns.  There are trade offs in 

choosing loosely coupled or tightly coupled differential pairs and those must be weighed 

carefully in system design [8]. 
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Figure 2 - Worst-case transmission channel. 
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Another common feature in serial digital multi-gigabit communication systems is 

the use of AC coupling between transmitter and receiver.  The use of AC coupling 

requires that the data be coded in a way to limit the frequency content of the signal to 

what can be passed through the AC-coupled transmission path.  There are three main 

advantages to using AC coupling.  The first is that AC coupling allows for different DC 

bias voltage levels at the transmitter and receiver.  This provides a lot of flexibility in 

system design and allows many different parts to operate together.  Next, AC coupling 

also allows the outputs to be shorted to ground either accidentally or intentionally without 

causing damage to the drivers at an interface with a removable connection.  Finally, AC 

coupling allows for the interconnection of two devices without requiring any common 

return connection between them and this can be useful when connecting different systems 

together.  This can be very important for networking applications. 

The use of AC coupling, as well as the associated requirement for a maximum run 

length of logic 0s or 1s to ensure proper clock recovery, leads to the use of run-length-

limited and DC-free codes in serial digital multi-gigabit communication systems.  One 

such code that is commonly used is referred to as 8B/10B coding and was developed by 

Widmer and Franaszek [9].  This code maps 8-bit data words into 10-bit transmission 

words.  It guarantees a maximum run length of 5 bits at any given time and a maximum 

running disparity between 0s and 1s of 6 at any given time [9]. 

1.2 Serial Digital Multi-Gigabit Communication System Standards 

Some metrics are presented in Table 1 to compare some of the serial digital multi-

gigabit communication standards.  The information in Table 1 was obtained from the 

applicable standards for each protocol [2] [3] [4] [5] [10] [11]. 
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Table 1 - Comparison of serial digital multi-gigabit communication standards. 

 XAUI Infiniband Serial Rapid 

IO (3.125 

Gbps, Long 

Run) 

Fibre 

Channel 

PCI Express 

Transmission rate per 

channel 

3.125 Gbps 2.5 Gbps 3.125 Gbps 2.125 Gbps 2.5 Gbps 

Effective transmission 

rate per channel after 

coding 

2.5 Gbps 2.0 Gbps 2.5 Gbps 1.7 Gbps 2.0 Gbps 

Total channels 4 1, 4, 12 1, 4 1 1, 2, 4, 8, 12, 

16, 32 

Maximum total 

transmission rate 

12.5 Gbps 30 Gbps 12.5 Gbps 2.125 Gbps 80 Gbps 

Maximum total 

transmission  rate after 

coding 

10 Gbps 24 Gbps 10 Gbps 1.7 Gbps 64 Gbps 

Maximum data packet 

size (bits) 

12144 32768 2048 16896 32768 

Minimum data packet 

size (bits) 

512 160 32 32 32 

Bit error rate 1.0e-12 1.0e-12 1.0e-12 1.0e-12 1.0e-12 

ECC method CRC error 

checking 

when used 

with 10Gbps 

Ethernet, 

8B/10B code 

error 

detection 

CRC error 

checking, 

8B/10B code 

error 

detection 

32- / 16-bit 

CRC error 

checking, 

8B/10B code 

error 

detection 

CRC error 

checking, 

8B/10B code 

error 

detection 

32- / 16-bit 

CRC error 

checking, 

8B/10B code 

error 

detection 

DC-free code 8B/10B 

coding 

8B/10B 

coding 

8B/10B 

coding 

8B/10B 

coding 

8B/10B 

coding 

Signaling output 

standard 

Differential – 

max 1.6 Vp-p 

swing 

Differential – 

1.0 to 1.6  

Vp-p swing 

Differential – 

1.0 to 1.6  

Vp-p swing 

Differential – 

0.325 to 1.0 

Vp-p swing 

Differential - 

0.8 to 1.2  

Vp-p swing 

Minimum receiver 

input thresholds 

Differential  - 

0.2 Vp-p 

Differential – 

0.175 Vp-p 

Differential – 

0.175 Vp-p 

Differential – 

0.2 Vp-p 

Differential – 

0.175 Vp-p 

AC coupling 

(or coupling 

capacitance) 

Yes 470 nF 

minimum 

Yes Yes for inter-

enclosure, 

Optional for 

intra-

enclosure 

75 – 200 nF 

Equalization Not required Pre-emphasis 

or passive 

equalization 

Not required Required in 

some 

applications 

De-emphasis 

Transmitter signal rise 

time 

60 ps – 130 

ps 

100 ps 

minimum 

40 ps 

minimum 

75 ps  - 192 

ps 

50 ps 

minimum 

Bit period 320 ps 400 ps 320 ps 470.59 ps 400 ps 

Maximum total jitter 

tolerance at receiver 

0.65 Unit 

Interval (UI) 

0.65 UI 0.6 UI 0.62 UI 0.6 UI 

Ratio of minimum 

signal rise time to bit 

period 

0.1875 0.25 0.125 0.159 0.125 
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1.3 Altera Stratix GX Development Board 

There are two major suppliers of programmable devices that contain multi-gigabit 

serial transceivers.  They are Xilinx and Altera.  Xilinx uses multi-gigabit serial 

transceivers in their Virtex II Pro line of Field Programmable Gate Arrays (FPGAs) and 

Altera has them in their Stratix GX line of FPGAs.  This project will use an Altera Stratix 

GX FPGA as the implementation and hardware test platform.  Some comparisons 

between the Altera Stratix GX and the Xilinx Virtex II Pro transceivers are shown in 

Table 2.  The device with the largest number of transceivers from each manufacturer has 

been chosen for comparison and the actual Altera device (EP1SGX25FF1020) on the 

Stratix GX development board to be used in this project has also been included.  The 

information in Table 2 was obtained from the datasheets for these devices from Xilinx 

and Altera [6] [7]. 

A development board from Altera has been used for testing of the bit-error-rate-

test block and the error correction code block in this project.  The development board 

contains many different features described in detail in its datasheet [12].  The parts of the 

development board used for this project were the Altera Stratix GX transceiver FPGA 

device (part number EP1SGX25FF1020-5ES), the HM-ZD backplane connector and the 

SMA connectors connected to the FPGA transceiver pins, the 7-segment displays and 

other LEDs for status information display, and the dip switches for test setup. 

The primary external connections for the Altera Stratix GX development board to 

be used in this project are the connections from one of the quad transceivers to a Tyco 

HM-ZD style backplane receptacle.  This will provide a good approximation of a real 

transmission channel including a backplane connector.  A test backplane card containing 
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a mating header for the receptacle on the Altera board will be used.  This test backplane 

card will loop the transmit differential pairs back to the receive differential pairs and 

function as a loopback connector approximating an actual transmission channel. 

Table 2 - Comparison of Altera and Xilinx multi-gigabit serial transceivers. 

 Altera Stratix GX 

(EP1SGX25FF1020) 

Altera Stratix GX 

(EP1SGX40GF1020) 

Xilinx Virtex II Pro 

(XC2VP70-7FF1704C) 

Maximum transmission 

rate per channel 

3.1875 Gbps 3.125 Gbps 

Total channels 16 20 20 

Parallel data width 8, 10, 16, 20 bits 8,10,16,20,32,40 bits 

Bit error rate 1.0e-12 1.0e-12 

DC-free code built in 8B/10B Coding 8B/10B Coding 

Error detection built in None CRC 

Maximum run length 

for clock recovery 

80 UI 75 UI 

Signaling output 

standard 

Differential – 0.35 to 1.6 Vp-p swing Differential – 0.8 to 1.6 

Vp-p swing 

Receiver input 

thresholds 

Differential 0.17 Vp-p swing Differential 0.175 Vp-p 

swing 

Internal termination 50, 60, 75 Ohm 50, 75 Ohm 

AC coupling Required - Output common voltage is different than 

input so AC coupling is required 

Not required – Output 

and input common 

voltages are 

programmable 

Equalization Dynamically programmable preemphasis and 

equalization 

Programmable 

preemphasis 

Transmitter signal rise 

time 

60 ps – 130 ps 120 ps typical 

Bit period 313.7 ps 320 ps 

Maximum total jitter 

tolerance at receiver 

0.65 UI (not explicitly stated, but compliance to 

XAUI jitter specification is stated) 

0.65 UI 

Total jitter output from 

transmitter 

0.3 UI 0.35 UI 

Random jitter output 

from transmitter 

0.16 UI 0.18 UI 

Intra differential pair 

skew 

10 ps 15 ps 
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2 Literature Review 

The earliest found reference to gigabit serial digital communications was at the 

IEEE International Microwave Symposium in 1972.  Gray presented a paper describing a 

gigabit digital communication system.  The system used QPSK to modulate two 500 

Mbps bit streams on a 1.5 GHz carrier.  The system contained a multiplexer and 

demultiplexer that converted from 250 Mbps parallel Emitter Coupled Logic (ECL) 

signals to 500 Mbps digital streams for modulation [13].   

The state of gigabit digital communications by 1979 was that development was 

still mostly in the conceptual stages.  A lot of work had been done at that time on basic 

circuit building blocks using technologies such as bipolar transistors in Si, GaAs 

MESFETs and MOSFETs, and charge-coupled devices.  Some applications where gigabit 

electronics were taking hold around this time were in measurement and test, radar and 

sensing systems, and communication systems.  It was noted around 1979 that use in 

computing applications was probably still a long way off because large scale computing 

clock rates were still around 10 MHz and the processing power to handle all the data 

bandwidth available in a gigabit serial link did not exist at that time [14].  It is interesting 

that some of the signaling technologies described in 1979 such as ECL and Current Mode 

Logic (CML) have become very common in recent years in multi-gigabit digital 

communication applications. 

By the 1980s, digital gigabit serial communication was being proposed as part of 

the SONET (Synchronous Optical Networking) standard developed by Exchange Carriers 

Standards Association.  The standard provides for a uniform way of implementing optical 

telecommunications networks [15].  One of the earliest commercially available devices 
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implementing gigabit serial communications was developed by Vitesse Semiconductor 

Corp. in conjunction with Bell Communication Research Laboratory, Livingston, NJ.  

The device was a serializer and deserializer (SERDES) for converting 8-bit parallel data 

to serial data at 1.24 Gbps.  The device’s part number was the VS8010 and it first went 

into production in May of 1988 [16].  Apparently this device was targeted at the OC-24 

SONET data rate and the earliest uses of gigabit serial data communications were in 

networking applications. 

The use of gigabit serial data communications soon expanded from networking 

applications to chip-to-chip interconnection applications.  As system interconnection 

bandwidth demands grew, gigabit serial data communications began to be applied to the 

problem of interconnecting devices locally within printed circuit boards or within 

chasses.  One of the earliest demonstrated examples of this was presented by researchers 

at the Hewlett Packard Lab, Palo Alto, CA.  They presented an entire system operating 

with serial links at 1.5 Gbps in 1991.  The system still used fiber optics for the main 

transmission channel but was targeted more at computer communication than telecom 

networking.  The chipset was noteworthy because it was one of the first silicon bipolar 

designs operating at gigabit data rates instead of some of the other chipsets presented up 

to this point that were designed in GaAs [17]. 

One of the oldest types of busses for interconnecting devices was the 

asynchronous multi-drop parallel bus.  In this type of architecture many devices are 

connected together on a shared bus where only one device can send data at a time.  A key 

advantage of such busses in early systems was the efficient use of pins without too much 

complexity.  As Input/Output (IO) bandwidth requirements increased, the parallel bus 
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was enhanced with a move from asynchronous to synchronous bus structures.  This 

allowed techniques such as pipelining and bursting and also allowed for a widening of 

busses to improve data throughput.  A familiar example of a synchronous parallel bus is 

PCI.  The synchronization of the parallel bus allowed for increased communication speed 

at the expense of increased design complexity [1]. 

The next evolutionary advancement in the synchronous parallel bus was the 

introduction of bridges.  The bridges allow for various segments of a large multi-drop bus 

to be isolated from each other to allow for larger overall bus structures with greater 

throughput possible [18].  The parallel bus was further enhanced by switching from 

multi-drop to source-synchronous, point-to-point architectures.  This enhancement 

enables full duplex data flow at even higher speeds.  The cost of the increased speed is 

increased design complexity since the signal paths must be more closely matched in 

length [1].   

A limitation with both the bridge architectures and especially with the point-to-

point source-synchronous architectures is the number of pins required on the devices.  

The bridge devices must duplicate the entire parallel interface for the number of busses 

connected to the bridge.  In point-to-point systems with more than two devices connected 

together, the interface pins must be duplicated for each additional device.  The high pin 

counts that these parallel architectures require along with the strict matching 

requirements in the printed circuit board make it difficult to scale them up in speed, and 

increase system cost [1].  An example of a source-synchronous parallel standard is 

HyperTransport and it allows for a maximum of 12.8 Gbytes/s of bandwidth [19]. 
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The evolution from the parallel bus to the serial bus has been subtle.  The source-

synchronous parallel bus is close in many respects to the serial busses that are becoming 

popular.  The main difference is that instead of a separate clock signal with data signals 

all synchronized to it, serial busses embed the clock with the data on a single 

transmission line.  Serial standards allow for multiple lanes of serial data to be 

transmitted similar to parallel busses, but there are not strict synchronization 

requirements between lanes because each lane is its own complete communications link.  

Serial busses eliminate the problems of clock and data skew and are able to work at up to 

10 times the rate of a source-synchronous bus.  Another advantage of serial busses is that 

they lower device pin counts because equal amounts of data can be transmitted on many 

fewer pins as compared to a parallel bus [1].   

The advantages of serial busses are not free and come with the added complexity 

of recovering the clock at the receiver, and requiring communication protocols that 

embed all the necessary link information in the serial bit stream.  Serial busses also allow 

for much further data transmission than parallel by utilizing communication techniques 

such as equalization.  One drawback that exists with serial communication is 

transmission latency due to all of the protocol and processing overhead required to 

serialize, transmit, and deserialize the data.  Some recent examples of standards that have 

been developed for serial communication are SFI-5 (2.5 Gbps per lane with 16 lanes), 

XAUI (2.5 Gbps per lane with 4 lanes), Serial Rapid IO (2.5 Gbps per lane with 1 or 4 

lanes), Fiber Channel (1.7 Gbps per lane with 1 lane), Infiband (2 Gbps per lane with 1, 

4, or 12 lanes), and PCI Express (2 Gbps per lane with 1, 2, 4, 8, 12, 16, or 32 lanes) [1]. 
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Source-synchronous standards such as HyperTransport still provide a viable 

solution for chip-to-chip interconnection, but experts agree that serial interfaces have an 

advantage in future applications.  Some of the advantages of the serial bus are subtle such 

as the easier printed circuit board (PCB) routing with fewer length-matching 

requirements.  Equalization at the receiver in serial busses allows for much greater 

transmission length and allows the use of the same dielectric materials such as FR4 

currently used in PCBs.  A further enhancement that some manufacturers have 

demonstrated is multi-level signaling in serial busses, which allows for even greater 

transmission rates [20]. 
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3 Error Correction Code Functional Block 

The design of the error correction code block consisted of several steps.  The first 

step was to characterize the typical communication channel used in multi-gigabit digital 

communication systems.  The next step was to describe the sources of noise and the types 

of bit errors that each source of noise is likely to cause.  After that the type of data to be 

transmitted was defined.  A general overview of various types of codes was then 

developed to help understand which type of code best fits this application.  Finally, after 

all of these aspects of the system were characterized and the different types of coding 

schemes were understood, a specific error correction code was designed for this type of 

communication system. 

3.1 Communication Channel 

The capacity in bits per second of a communication channel was defined by 

Shannon in [21] and is given by ( 1 ), where 


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P
WC 1log2 . ( 1 ) 

 

In this relationship, C is the capacity of the channel in bits per second, W is the 

bandwidth of the channel in Hz, P is the average signal power of the signal transmitted 

through the channel, and N is the average noise power in the channel.  The bandwidth is 

the absolute frequency range within which a signal is passed.  In this absolute-bandwidth 

definition, no signal energy is passed through the channel outside of the bandwidth.  

Equation ( 1 ) assumes that the noise is Gaussian white noise.  The capacity of the 
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channel represents the maximum amount of information that can be sent through the 

channel with an arbitrarily small rate of errors.  In order to achieve this capacity, the data 

will have to be encoded in a sufficiently complex way. 

A more typical measure used in digital communication systems than the signal 

power to noise power ratio in ( 1 ) is a normalized version of signal to noise ratio.  This 

measure is the ratio of the energy per bit to the noise power spectral density and its 

relationship to the signal power to noise power ratio is given by ( 2 ), where 

R

W

N

S

N

Eb ×=
0

.
 ( 2 ) 

 

In this relationship, S, N, and W are the same as in ( 1 ), and R is the transmission bit rate 

[22]. 

3.1.1 Channel Bandwidth 

The gradual roll-off bandwidth of a typical communication channel does not 

match the ideal or absolute bandwidth used in ( 1 ) for the channel capacity.  In order to 

establish the capacity of the serial digital multi-gigabit communication system channel, a 

method of estimating the bandwidth must be used.  The two methods considered in this 

project are the half power bandwidth for the channel and the bounded power spectral 

density bandwidth for the channel [22].  A block diagram of the system being modeled to 

determine the bandwidth in this project is shown in Figure 3.  This block diagram shows 

the system without AC coupling capacitors.  The analysis of the bandwidth has been 

organized into two separate analyses, one for the maximum frequency based on the 

frequency response of the channel without AC coupling capacitors, and one for the 
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minimum frequency based on the frequency response of the AC coupling capacitors and 

a 100-Ohm differential load. 

 

 

Figure 3 - Differential transmission channel model block diagram. 

 

The model used for the package is a behavioral HSPICE model available from 

Altera for the Stratix GX device used on the Altera Stratix GX development board used 

in this project.  The models are for a transmitter differential pin pair and a receiver 

differential pin pair.  They cover the connection from the die of the Stratix GX device 

through the via used to attach the ball grid array (BGA) package to the printed circuit 

board (PCB). 
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The models used for the IO and controller card PCB traces are based on typical 

system implementations.  The traces are typically designed to match the 100-Ohm 

differential impedance of the driver and receiver.  The traces are copper differential edge 

coupled stripline traces that are embedded in PCBs constructed with FR4 dielectric 

material.  The trace parameters and view of the 2-dimensional cross section are shown in 

Figure 4.  From this cross section and the parameters shown, the 2D field solver in 

Cadence Specctraquest was used to create a SPICE model of the differential trace.  The 

dielectric constant (Er) and dielectric loss tangent for FR4 are approximations based on a 

PCB material comparison document found on Merix Corporation’s web site [23].  Merix 

Corporation is a PCB fabrication company.  The trace model is a lossy distributed 

transmission line model in the form of a w-element model for use with HSPICE.  The 

Specctraquest field solver predicted the differential impedance to be 100 Ohms.   

 

Figure 4 - IO and controller card differential trace, 2-dimensional cross section. 

The model used for the backplane traces was created similar to the IO and 

controller card traces and also based on typical system implementations.  The trace 

parameters and view of the 2-dimensional cross section of the backplane trace are shown 

in Figure 5. 
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Figure 5 - Backplane card differential trace, 2-dimensional cross section. 

 

The model for the connector is based on a connector model available from Tyco 

for the HM-ZD backplane connector.  The specific HM-ZD connector model used in the 

simulation is for an 8-row and 4-column version of the connector.  The pins that were 

simulated are differential pairs located in rows E and F and in the middle columns.  The 

Altera Stratix GX development board contains an 8-row, 10-column HM-ZD connector 

as previously described.  The connector model is a behavioral SPICE model for use in 

simulations with the Synopsys HSPICE tool.  The model includes the vias on both sides 

of the connector.   

The models were connected together and simulated in HSPICE with an AC 

frequency sweep from 1 Hz to 15 GHz.  The HSPICE circuit that was simulated is shown 

in Figure 6.  The circuit was simulated for two different lengths of backplane traces 



  29 

which were 10 inches and 40 inches.  The simulated power gain of the channel is plotted 

in Figure 7.   

 

Figure 6 - Channel frequency response SPICE simulation circuit. 
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Figure 7 - Backplane channel power gain response excluding AC coupling capacitors. 
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The point on the gain response where the gain has dropped to –3dB is the 

maximum frequency used in the definition of the half power bandwidth.  For the 10-inch 

backplane trace, the –3dB point corresponds to 703.0 MHz. and for the 40-inch 

backplane trace, the –3dB point corresponds to 246.1 MHz.  The point on the gain 

response where the gain drops below and stays below –35dB is the maximum frequency 

used in the definition of the bounded power spectral density bandwidth [22].  For the 10-

inch backplane trace, this corresponds to 11.27 GHz. And for the 40-inch backplane 

trace, this corresponds to 11.16 GHz. 

Another common feature in the transmission channel of serial digital multi-gigabit 

communication systems is the use of AC coupling capacitors.  The AC coupling 

capacitors perform high pass filtering on the data signal.  This leads to a lower frequency 

limit that is above zero, for the transmission channel.  This lower frequency limit has 

been considered separately from the high frequency limit that was analyzed without 

including the AC coupling capacitors in the channel simulation model.  A SPICE 

simulation circuit to analyze the low frequency limit due to the AC coupling capacitors 

for the differential transmission channel is shown in Figure 8.  The AC coupling 

capacitors are C1 and C2.  An AC sweep simulation was performed and the differential 

voltage gain ((Vout_p-Vout_n) / (Vin_p-Vin_n)) was plotted versus frequency.  The 

simulation was performed for two values of AC coupling capacitors, 75 nF and 470 nF to 

represent the range of capacitor values used in the various serial digital multi-gigabit 

communication system standards.  The plot is shown in Figure 9. 
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Figure 8 - AC coupling capacitor low frequency cut off simulation circuit. 
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Figure 9 – Frequency response with AC coupling capacitors. 
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The point on this gain response where the gain has dropped to –3dB is the 

minimum frequency used in the definition of the half power bandwidth.  For the 75 nF 

capacitors, the –3dB point corresponds to 42.46 kHz and for the 470 nF capacitors, the –

3dB point corresponds to 6.776 kHz.  The point on the gain response where the gain 

drops below –35dB is the minimum frequency used in the definition of the bounded 

power spectral density bandwidth.  For the 75 nF capacitors, this corresponds to 754.8 Hz 

and for the 470 nF capacitors, this corresponds to 120.5 Hz. 

The bandwidth for each combination of backplane trace and AC coupling 

capacitor is shown in Table 3.  The AC coupling capacitor has very little effect on the 

overall channel bandwidth because the low frequency cut off is very small compared to 

the high frequency cut off. 

Table 3 - Channel bandwidth results. 

Backplane 

Trace 

Length 

AC 

Coupling 

Capacitor  

Half Power 

Minimum 

Frequency 

(Hz) 

Half Power 

Maximum 

Frequency 

(Hz) 

Bounded 

Power 

Spectral 

Density 

Minimum 

Frequency 

(Hz) 

Bounded 

Power 

Spectral 

Density 

Maximum 

Frequency 

(Hz) 

Half Power 

Bandwidth 

(MHz) 

Bounded 

Power 

Spectral 

Density 

Bandwidth 

(GHz) 

10 in. 75 nF 4.246E+04 7.030E+08 7.554E+02 1.127E+10 703.0 11.27 

40 in. 75 nF 4.246E+04 2.461E+08 7.554E+02 1.116E+10 246.1 11.16 

10 in. 470 nF 6.776E+03 7.030E+08 1.205E+02 1.127E+10 703.0 11.27 

40 in. 470 nF 6.776E+03 2.461E+08 1.205E+02 1.116E+10 246.1 11.16 

 

It is clear from looking at the bandwidth results for the backplane channel that any error 

correction code chosen should be as high a rate as possible since there is significant 

attenuation of the higher frequency content of a multi-gigabit PCM NRZ-L signal. 
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3.1.2 Channel Capacity 

Equations ( 1 ) and ( 2 ) can be combined to give an expression of Eb / N0 in terms 

of channel bandwidth and the channel capacity.  With the transmission rate (R) assumed 

to equal the channel capacity (C), the following equation is the result of this combination: 

0

2 1

C

b W
E W

N C

 
= − 

  . 

( 3 ) 

 

Using ( 3 ), the minimum required value of Eb / N0 for a transmission rate of 3.125 

Gbps corresponding to the maximum rate of the Xilinx Virtex II Pro and Altera Stratix 

GX transceivers is calculated and shown in Table 4. 

Table 4 - Minimum Eb / N0 for transmission channel at 3.125 Gbps data rate. 

Backplane 

Trace Length 

Half Power 

Bandwidth 

Bounded Power 

Spectra Density 

Bandwidth (GHz) 

Minimum Eb / N0 

Assuming W = 

Half Power 

Bandwidth 

Minimum Eb / N0 

Assuming W = 

Bounded Power 

Spectral Density 

Bandwidth 

10 in. 703.0 MHz 11.27 GHz 6.70 dB -1.17 dB 

40 in. 246.1 MHz 11.16 GHz 27.19 dB -1.16 dB 

 

More discussion will be given in subsequent sections regarding estimates of       

Eb / N0 for serial digital multi-gigabit communication systems and the capacity of the 

channel based on those estimates. 
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3.2 Noise Sources 

There are many sources of noise in a serial digital multi-gigabit communication 

system including both random sources and deterministic sources.  The various sources of 

noise occur both within the transmitter and receiver integrated circuits and within the 

communication channel.  Some sources of noise are limited to the transistors in the 

transmitter and receiver and other sources occur in both the transistors and in the 

transmission channel interconnection.  The noise sources that are referred to as 

deterministic can be predicted exactly if enough information is known about the 

communication channel characteristics and the transmitted data characteristics.   They are 

also bounded by the worst-case scenario whereas random noise is not bounded and is 

assumed to follow a Gaussian distribution. 

3.2.1 Random Noise 

The first source of random noise is thermal noise and it occurs within the 

transmitter and receiver transistors, the internal termination resistors, and all of the 

electrical interconnections.  The random motion of electrons in conductors causes 

differences in voltage across a conductor even if the average current through the 

conductor is zero.  These differences in voltage are the thermal noise.  The spectrum of 

thermal noise is assumed to be flat over the frequencies of interest in serial digital multi-

gigabit communication systems and is therefore Gaussian white noise.  For MOSFETs, 

there is also thermal noise within the transistor itself, especially in the channel of the 

MOSFET [24]. 

Besides thermal noise, another form of random Gaussian white noise that occurs 

within current carrying interconnections is called shot noise.  This type of noise results 
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from an electrical charge crossing the potential barrier in a transistor.  Since all charge 

exists in discrete electrons, the charge is not continuously crossing the charge barrier but 

each electron crosses the barrier discretely and the crossing is random in nature.  The 

random distribution of barrier crossings results in the apparent constant flow of current 

that is observed.  Statistical variations in the constant flow of current due to the random 

nature of barrier crossings results in noise [25]. 

Another source of random noise occurs within the transistors in the transmitter 

and receiver devices called flicker noise.  A cause of this noise is that at the interface 

between materials in an integrated circuit there are atoms that have unfilled bonds 

available because they are not bonded with the differing material.  These bonds serve as 

traps because the free bonds allow extra energy states to trap passing electrons.  Electrons 

are trapped and released some time later.  This type of noise has a spectral density that 

follows a 1/f relationship with frequency [24].  This type of noise is sometimes referred 

to as pink noise. 

3.2.2 Deterministic Noise 

The first source of deterministic noise is on the voltage rails that supply power to 

the transistors in the transmitter and receiver ICs.  This noise comes from various sources 

including the circuits that generate the voltage supplies and voltage drops across the 

inductance of the power distribution system during switching events (called simultaneous 

switching noise).  Noise on the power supplies causes changes in the behavior of the 

transistors and leads to noise on the electrical signals used to send the information in 

serial digital multi-gigabit communication systems.  This noise is considered to be 

uncorrelated to the data [26]. 
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Another type of noise is due to the proximity of the transmission channel 

elements to other signals and is called crosstalk.  Crosstalk occurs in connectors and 

between traces and the problem increases as design density increases.  For the Tyco HM-

ZD backplane connector on the Altera Stratix GX development board used in this project, 

the maximum amount of crosstalk specified by the manufacturer is 1.6% of the signal 

strength [27].  The amount of crosstalk between the traces can usually be limited in serial 

digital multi-gigabit communication systems because there are fewer traces to route than 

in traditional parallel busses and the spacing between traces can be kept large.  Crosstalk 

noise can be correlated or uncorrelated to the data.  Crosstalk noise can also be sinusoidal 

in nature [26]. 

Intersymbol interference is not actually noise but its effects are similar to noise.  

The frequency dependent loss of the channel, as illustrated in the bandwidth plots in 

Figure 7, causes the higher frequency content of the digital signal to be attenuated more 

than the lower frequency content.  This causes a dispersion of a pulse from one bit period 

into adjacent bit periods.  The spreading of a bit into subsequent bit periods degrades the 

signal to noise ratio and can be thought of as noise.  The largest contributor to frequency 

dependent loss would be the traces that suffer from the skin effect and the dielectric 

effect.  The skin effect loss is proportional to the square root of frequency and the 

dielectric loss is proportional to frequency [8].  The skin effect is caused by the crowding 

of high frequency current to the outside surface of conductors, lowering the effective 

conducting cross sectional area and increasing the effective resistance of the conductor.  

The dielectric loss is caused by an increase in the conductance with frequency of the 

dielectric medium surrounding a transmission line [8].  The effects of intersymbol 
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interference can be mitigated through the use of pre-emphasis or equalization.  Either of 

these methods works by amplifying the high frequency components of the signal to 

counteract the high frequency component attenuation by the transmission channel.  Pre-

emphasis works by performing the amplification before the signal enters the transmission 

channel at the transmitter, and equalization occurs by performing the amplification after 

the signal exits the transmission channel at the receiver.  The Altera Stratix GX 

development board used in this project supports both pre-emphasis and equalization. 

Another source of deterministic noise is duty cycle distortion.  Duty cycle 

distortion is usually the result of characteristics of the transistors in the transmitter and 

receiver devices.  Differences in the rise and fall times of signals inside the devices cause 

a distortion of the bit period depending on if the bit is a 1 or a 0.  Both intersymbol 

interference and duty cycle distortion noise are considered to be correlated to the data 

[26]. 

3.2.3 Noise Effects 

Crosstalk and intersymbol interference are typically the two largest noise sources 

in serial digital multi-gigabit communication systems [28].  In an analysis and simulation 

of similar communication channels in [28], the crosstalk and intersymbol interference are 

shown to be equal contributors of interference at 1.15 Gbps when no equalization is used.  

Below 1.15 Gbps, crosstalk is the dominant source of interference and above 1.15 Gbps 

intersymbol interference becomes the dominant source of interference.  Using 

equalization can shift the crossover point out to 6.25 Gbps. 

Noise due to crosstalk and intersymbol interference is bounded and is referred to 

in the literature as being deterministic [28].  Because the noise is bounded, serial digital 
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multi-gigabit communication systems are designed so that these two factors and all the 

rest of the deterministic noise sources will leave sufficient noise margin for the system to 

operate without bit errors.  The addition of the Gaussian random unbounded noise on top 

of the deterministic noise is what will lead to violations of noise margin and bit errors.  

This conclusion is based on the way in which bit error rates are defined for serial digital 

multi-gigabit communication systems as explained in [26].  The methodology of defining 

bit error rates will be explained in more detail in section 3.4.4. 

The bit error rate for serial digital multi-gigabit communication systems is defined 

in terms of jitter instead of the classic Eb/N0.  Jitter is the error in the timing of a signal.  

Jitter is, strictly speaking, not noise, but a result of noise.  Noise causes the transitions of 

bits to shift in time from their ideal position and this shifting is referred to as jitter.  Jitter 

leads to the closure of the eye diagram because of horizontal variations in signal 

transitions, and is categorized as deterministic or random jitter.  Deterministic jitter is 

caused by the deterministic noise and random jitter is caused by the random noise.  

Deterministic jitter sources are classified into the categories of duty cycle distortion, data 

dependent (ISI or crosstalk), sinusoidal (power supply noise), and uncorrelated bounded 

(crosstalk) by Information Technology - Fibre Channel - Methodologies for Jitter 

Specification [26].  The total jitter is the combination of the deterministic and random 

jitter.  Just as random noise is unbounded, random jitter is also unbounded.  Models are 

used with defined bit error rates in standards such as Fibre Channel, XAUI, and PCI-

Express, to set the maximum jitter allowed and the maximum jitter the receiver must be 

able to tolerate [26].  It is noted that noise also affects the magnitude of the signal as well 

as the position in time of the transitions.  The magnitude effects show up as the vertical 
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variations in signal transitions, which lead to the closure of the eye diagram.  Since the 

standards define bit error rate in terms of jitter, they are based on the assumption that the 

probability of bit errors due to magnitude noise must be much smaller than the 

probability of bit errors due to jitter. 

3.3 Transmitted Data 

The source data in chip-to-chip communications can come in many different 

forms such as streaming video, network data packets, and simple data-word read and 

write requests.  This diversity of source data is a reason why all of the serial digital multi-

gigabit communication standards reviewed in section 1.2 allow for variable length data 

payloads.  The PCI-Express standard encompasses the whole range of data payload sizes, 

from 32 bits up to 32768 bits.  Any error correction code developed for chip-to-chip 

communications must permit small enough block sizes so that when used in typical 

applications, data packets do not have to be padded with non-data bits in order to be 

transferred.  This would be inefficient use of the available data bandwidth.  A reasonable 

data block size for an error correction code would not exceed 32 bits to correspond with 

the smallest available data block size in the standards.  With typical memory bus widths 

being 64 bits and the future use of processors with 64-bit and 128-bit data paths, choosing 

64 or 128 bits as the data block size would also be reasonable.  

In addition to the requirement of a small enough block size so that data transfer 

can occur without needing a lot of padding, another similar requirement relates to the 

latency for data transmission from the information source to the information sink.  The 

tolerable latency again depends on the type of information being sent, and chip-to-chip 

communication systems need to support many different types of information.  A classic 
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parallel bus standard used in low latency chip-to-chip interconnections is the PCI bus.  

The latency defined in PCI-X Addendum to the PCI Local Bus Specification is 16 clock 

cycles [29].  Since the PCI bus is a parallel architecture, each clock period represents one 

block period with a block size as small as 32 bits.  A reasonable maximum latency would 

be 16 times the minimum data block period for PCI-X, which is 7.5 ns (corresponding to 

133 MHz PCI-X specification).  This would be a maximum latency of 120 ns. 

The PCI-Express and Serial Rapid IO specifications both use 8B/10B coding for 

maximum run length limiting and a 16-bit or 32-bit CRC for error checking depending on 

the block size and data type.  For small block sizes of 32 bits, a 16-bit CRC with 8B/10B 

coding provides an overall code rate of 0.533.  For a larger block size (the largest with 

Serial Rapid IO) of 2048 bits, the code rate would be 0.788.  These numbers provide 

some insight into the code rates that would be acceptable for the error correction coding 

in this design project.  A code rate closer to 0.788 would be much more desirable. 

There are three aspects of the system that are affected by the maximum run length 

of the coded data.  The first is the clock and data recovery that must be performed by the 

receiver on the transmitted data pattern.  The maximum run length allowed by the Xilinx 

and Altera devices for clock recovery is 75 bits.  The second is the magnitude of voltage 

at the receiver.  The transmitted voltage will initially be passed through the AC coupling 

capacitor because it is transient and not a DC signal.  As the transmitted voltage remains 

in one state though, corresponding to a long string of 1s or 0s, the AC coupling capacitor 

will block the DC content and the voltage at the receiver will decay according to the RC 

time constant.  For the Xilinx and Altera Devices, the worst-case voltage margin 

(minimum output voltage of 0.35 V minus minimum required input voltage of 0.17 V) is 
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0.18 V.  A conservative requirement is that voltage margin not drop by more than 1%, 

due to the coupling capacitor effect, which corresponds to a maximum voltage drop of 

the voltage at the transmitter of approximately 0.5%.  Assuming a 100-Ohm load 

resistance, a worst case capacitance of 150 nF (two 75 nF capacitors), and a maximum 

allowed voltage decay of 0.5%, the argument of the logarithmic function in ( 4 ) is 0.995 

and the maximum time between transitions is calculated using ( 4 ) to be 75.2 ns, where  
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  This corresponds to 150 bits at 2 Gbps and because the maximum run length 

(MRL) must be limited to 75 bits for clock recovery, the voltage droop due to the AC 

coupling capacitor will not impose any additional requirement.  However, even with the 

MRL limited to 75 bits, the degradation of noise margin could still exceed 1% if the 

running disparity is not appropriately limited, that is, if the DC level of the data signal is 

not appropriately bounded.  For example, a data signal that repeatedly contains the 64-bit 

pattern of 63 logic-1 bits (at + 0.35V) followed by one logic-0 bit (at -0.35V) has an 

MRL of 63 bits, but has such a large DC level that it will cause the voltage on the other 

side of a coupling capacitor (after several repetitions of the data pattern) to never reach 

the minimum level of +0.17V needed to be recognized as a logic-1, and will not meet the 

noise margin requirement. 

The third consideration is deterministic jitter caused by the voltage droop at the 

receiver during a long string of 1s or 0s.  The problem is illustrated in Figure 10, which 

shows an approximation of the jitter based on the parameters of peak-to-peak voltage, 

voltage droop, and the 10% to 90% rise time. 
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Figure 10 - Deterministic jitter from AC coupling. 

The difference between t1 and t2 in Figure 10 is the peak-to-peak magnitude of the 

deterministic jitter and can be approximated by ( 5 ), where 

2 1 (1.25)
Vdroop

t t tr
Vpp

− = . ( 5 ) 

 

From ( 5 ), with a maximum voltage droop of 0.5% of the peak voltage, or 1% of the 

peak-to-peak voltage, and a rise time of 130 ps, corresponding to the maximum rise time 

of the Altera and Xilinx transceivers, a peak deterministic jitter of 1.625 ps results.  This 

is very small (corresponding to 0.00508 UI at 3.125 Gbps), so the 150-bit maximum run 

length that would cause a voltage droop producing this amount of jitter is sufficiently 
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small.  The overall MRL limitation is imposed by the first aspect discussed above, and is 

75 bits. 

3.4 Probability of Bit Error 

There are a few different ways to characterize the probability of a bit error in a 

serial digital multi-gigabit communication system.  The first method is the traditional plot 

of bit error rate versus Eb / N0, which assumes that all the noise in the channel is 

Gaussian.  As discussed in section 3.2, the dominant noise sources are deterministic so an 

alternative approach is to plot the probability of a bit error versus Eb / N0 with the 

deterministic disturbances considered.  The use of both of these first two methods 

provides a good way to approximate the true transmission capacity of the channel.  The 

final method is the one used within communication standards such as Fibre Channel in 

which the probability of a bit error is plotted versus jitter [26]. 

The current standards for serial digital multi-gigabit communication systems use 

8B/10B coding for maximum run length limiting and CRC coding for error detection.   

3.4.1 Bit Error Rate versus Gaussian Noise 

An important measure of performance of a digital communication system is the 

probability of a bit error or the bit error rate.  For different types of modulation and 

coding schemes, the probability of a bit error can be plotted versus the signal to noise 

ratio for Gaussian noise channels [22].  The signal to noise ratio in these plots is typically 

expressed as Eb/N0, as used in ( 2 ).  The required bit error rate for all of the serial 

standards reviewed in section 1.2 is 1.0e-12.  The modulation and signaling type used in 

the serial digital multi-gigabit communication systems under consideration in this project 
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is differential-voltage baseband PCM with the NRZ-L signal format.  An expression for 

the bit error rate versus Eb/N0 for this signaling is given in ( 6 ).  In ( 6 ), Q(x) and erfc(x) 

are two forms of the complementary error function used to compute the area under the 

tail of a Gaussian function [22].  Thus,  
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Using ( 6 ), a plot of the probability of a bit error versus Eb/N0 has been plotted in 

Figure 11.  In this figure, the value of Eb/N0 corresponding to a bit error rate of 1.0e-12 is 

shown to be 13.9 dB. 
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Figure 11 – Probability of bit error for Gaussian noise channel. 
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3.4.2 Bit Error Rate versus Gaussian Noise with Deterministic Noise 

The largest noise sources in serial digital multi-gigabit communication systems 

are not Gaussian but are deterministic as pointed out in section 3.2.3.  The Gaussian noise 

in a serial digital multi-gigabit communication system operating at 3.125 Gbps, 

corresponding to a bit error rate of 1.0e-12, was shown in [30] to be much lower than that 

predicted by ( 6 ).  In [30], Ahmad and Cain analyzed the performance of the 

communication channel and showed the noise due to intersymbol interference and 

crosstalk were the largest noise sources.  A plot of the probability of bit error was plotted 

versus Gaussian Eb / N0 assuming the added distortion due to intersymbol interference 

was present.  The result was a curve of very similar shape to Figure 11 but shifted to the 

right significantly.  At a bit error rate of 1.0e-12 the resulting value of Eb / N0 was about 

28 dB.  Another thing shown in [30] was that when intersymbol interference and random 

jitter of the receiver sampling clock are both considered, there is a floor to how low the 

probability of a bit error can go, and increasing Eb / N0 does not further reduce the 

probability of bit error.  This is a similar effect to that discussed by Sklar in [22] about 

how intersymbol interference distorts the received signal in a communication system and 

creates a lower limit to the achievable bit error rate.  The largest floor shown in [30] 

occurred at a bit error rate of around 1.0e-39.  This provides confidence that serial digital 

multi-gigabit communication systems operating at rates up to 3.125 Gbps and typically 

requiring a bit error rate of approximately 1.0e-12 are not operating near the bit error rate 

floor, and that error correction coding can be an effective means to lower the bit error rate 

in such systems. 
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3.4.3 Transmission Capacity of the Channel 

Using the two values of bandwidth, W, determined from the SPICE simulation 

described in section 3.1.1, for a 40-inch backplane transmission channel, ( 3 ) was used to 

plot the capacity of the channel, C, as a function of Eb / N0, and the results are shown in 

Figure 12.   Assuming that a backplane communication channel operates with Eb / N0 

high enough to achieve the target bit error rate of 1.0e-12 without the use of coding, the 

channel capacity of the backplane communication channel (with the use of coding) lies 

somewhere between the two plots of capacity versus Eb / N0 on Figure 12, at that 

operating value of Eb / N0.  The value of Eb / N0 needed to achieve the target bit error rate 

of 1.0e-12 without coding will be between 13.9 dB and 28 dB, as determined in the 

previous two sections.  The value of 13.9 dB is needed by the channel without coding to 

achieve a target bit error rate of 1.0e-12 for a Gaussian noise channel.  The value of 28 

dB is needed by the channel without coding to achieve a target bit error rate of 1.0e-12 

for an intersymbol interference dominated channel.  When deterministic noise is present, 

if all of the deterministic noise could be eliminated through equalization filtering, 

advanced crosstalk cancellation techniques, or any other methods making use of the 

deterministic nature of the noise, then the capacity of the channel at an Eb / N0 of 28 dB 

could in theory be reached.  In reality it is not possible to eliminate all of the 

deterministic noise.  If on the other hand the channel is operating with only random 

Gaussian noise, which Shannon showed is the worst-case type of noise in [31], then the 

capacity would be at least that corresponding to Eb / N0 of 13.9 dB.  In Figure 12, the 

maximum transmission rate of 3.125 Gbps supported by both the Xilinx Virtex II Pro and 

the Altera Stratix GX is shown on the graph at Eb / N0 of 13.9 dB and 28 dB. 
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Figure 12 - 40-inch backplane channel capacity. 

Table 5 shows the values of capacity from Figure 12 corresponding to 13.9 dB 

and 28 dB.  The serial digital multi-gigabit communication systems implemented using 

Xilinx and Altera devices are operating quite a bit below the channel capacity defined by 

the bounded power spectral density bandwidth.  Since reliable communication can occur 

without coding at the maximum transmission rate for Xilinx and Altera devices and even 

the next generation of devices supporting 10 Gbps communication will still be well 

below the capacity, it is unlikely that coding is necessary to allow data transmission to 

occur in serial digital multi-gigabit communication systems.  The goal of coding in these 

systems is therefore to lower the bit error rate. 
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Table 5 - Channel capacity. 

Channel Type Eb / N0 

Half Power 

Bandwidth 

Bounded 

Power Spectral 

Density 

Bandwidth 

Capacity 

Based on 

Half Power 

Bandwidth  

Capacity 

Based on 

Bounded 

Power Spectral 

Density  

Bandwidth 

13.9 dB 5.30 Gbps 85.0 Gbps 
10 in. Backplane 

28 dB 
703.0 MHz 11.27 GHz 

9.14 Gbps 146.5 Gbps 

13.9 dB 1.86 Gbps 84.1 Gbps 
40 in. Backplane 

28 dB 
246.1 MHz 11.16 GHz 

3.20 Gbps 145.1 Gbps 

 

3.4.4 Bit Error Rate versus Jitter 

In most of the current serial digital multi-gigabit communication system standards 

described in section 1.2, the bit error rate is specified in terms of jitter instead of in terms 

of Eb / N0.  Jitter is classified as either random or deterministic as previously discussed.  

Deterministic jitter is bounded and is characterized by a peak-to-peak value.  Random 

jitter is unbounded and is characterized by an rms value.  This rms value is equivalent to 

the standard deviation of the gaussian distribution of the jitter.  A given number of 

standard deviations corresponds to a bit error rate, so a peak-to-peak value of random 

jitter that is sometimes referred to is the rms value multiplied by a number of standard 

deviations that corresponds to a specific bit error rate.  The definition of bit error rate 

versus jitter described in this section is based on Information Technology - Fibre Channel 

- Methodologies for Jitter Specification [26]. 

If only random jitter is present, the bit edge position can be plotted as a Gaussian 

probability density function (PDF) versus the time at which the edge occurs.  The time 

value is usually normalized to the unit interval (UI).  A value of 1 UI corresponds to the 
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bit period.  The mathematical representation of this Gaussian PDF is given as ( 7 ) [26], 

where 
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In ( 7 ), t is the jitter time and σ is the standard deviation of the random jitter, both in 

units of UI.  The function is plotted, centered at 0 UI for the leading edge of a bit, and 

centered at 1 UI for the trailing edge of a bit.   

Receiver jitter tolerance is defined as the time window centered about the middle 

of the bit period, such that if both leading-edge and trailing-edge transitions occur outside 

of the window, the receiver will make the correct decision as to whether the bit is a 1 or a 

0.  If either the leading-edge or trailing-edge transition occurs within the window, then it 

is assumed that the receiver will make the wrong decision and a bit error will occur.  The 

probability of a bit error is the area under the tails of the PDFs from ( 7 ) that fall beyond 

jitter tolerance thresholds as shown in Figure 13 times the likelihood that a transition 

occurs.  The likelihood of a transition, or transition density (TD, referred to as α), is 

usually assumed to be 0.5 meaning that half of the bits result from a transition.  The 

expression for the total bit error rate is given by ( 8 ) [26], where 
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In ( 8 ), α is the transition density for the data, JT is given by ( 7 ), Lth_l is the left side 

receiver jitter threshold in units of UI, and Rth_l is the right side receiver jitter threshold 
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in units of UI.  The receiver jitter tolerance is usually specified in terms of the maximum 

amount of tolerable jitter that results in the error window however.  For example, the 

Altera and Xilinx devices specify a receiver jitter tolerance of 0.65 UI and this 

corresponds to a window opening of (Rth_l – Lth_l) = 0.35 UI.  The average value of 

Lth_l and Rth_l is equal to 0.5 for any system where the jitter PDF is an even function, so 

in this example, Lth_l would be 0.325 UI and Rth_l would be 0.675.   

 

Figure 13 - Gaussian random jitter probability density function at each bit edge. 

One other thing to note is that for a receiver jitter tolerance of 0.65 UI, the 

maximum allowed peak-to-peak jitter is 0.65 UI.  At a given bit error rate, this total jitter 

budget can be divided between deterministic and random jitter and both values would be 

referred to as peak-to-peak values.  However, the random jitter is unbounded, so it does 

not have a peak-to-peak value, but the allocation of the total peak-to-peak jitter budget to 
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random jitter can be converted into a maximum allowed rms jitter for any given bit error 

rate as a design criteria for a system.  For a bit error rate of 1.0e-12 the value of peak-to-

peak random jitter is 14 times the rms jitter.  The rms jitter is the same as the standard 

deviation from   ( 7 ). 

A worst-case model for the deterministic jitter that is to be added to the random 

jitter assumes that the transition edge is equally likely to occur at either of the two peaks 

of the peak-to-peak deterministic jitter value.  The PDF of deterministic jitter would then 

consist of two impulse functions, each of weight 0.5, one at each of the two peak values.  

The combined PDF of the random and deterministic jitter is the convolution of the 

random jitter PDF from ( 7 ) and the deterministic jitter PDF.  The resulting expression is 

given by ( 9 ) [26], where 
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In ( 9 ), t is the jitter time, W is the peak-to-peak magnitude of the deterministic jitter, and 

σ is the standard deviation of the random jitter, all in units of UI.  A plot of the PDF for 

the case of the jitter requirements of the XAUI standard is shown in Figure 14.  The 

XAUI standard specifies a maximum total jitter of 0.65 UI at the receiver, with 0.47 UI 

being the peak-to-peak deterministic jitter and 0.18 UI being the specified maximum 

peak-to-peak random jitter.  At a bit error rate of 1.0e-12, 0.18 UI of peak-to-peak 

random jitter corresponds to a value of σ equal to 0.0129 UI. 
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Figure 14 - XAUI PDF of bit transition times. 

The areas under the PDFs for the left and right transitions were computed numerically 

from the sample point to infinity for the left PDF of Figure 14 and from negative infinity 

to the sample point for the right PDF of Figure 14 as indicated by ( 8 ).  Normally in 

statistics, the area under each PDF from negative infinity to infinity is equal to 1 since the 

event must occur somewhere.  For this analysis, though, when determining the 

probability of a bit error, each integrated PDF is multiplied by the transition density 

which is assumed to be 0.5.  The sum of the areas under the two PDFs shown in Figure 

14 (each one including two Gaussian-shaped sections), across the entire PDFs, would be 

2, but since each is multiplied by the transition density of 0.5 the sum is 1.  The overall 

probability of bit errors for a given sampling point is the sum of the two areas under the 

PDFs, over the appropriate intervals, times the transition density of 0.5.  One important 

assumption of this mathematical model is that transitions from neighboring bit positions 

do not contribute to the probability of a bit error.  The total bit error rate is plotted in 
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Figure 15 and this type of plot is typically referred to as a bathtub curve because the 

shape resembles a bathtub. 
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Figure 15 - Probability of bit error plot for XAUI. 

To evaluate whether the error correction code employed is effective at reducing the bit 

error rate, a plot such as in Figure 15 will be made for the uncoded and coded systems for 

comparison purposes. 

There are some possible drawbacks to the jitter method of specifying the bit error 

rate.  The first is that it assumes that bit errors only occur on bits that are the result of a 

transition or have a transition as the next bit.  There must also be some probability in 

NRZ-L for a bit error to occur for a bit with no transitions on either side of it.  This 

probability must be assumed to be small enough to not matter significantly.  The next 

drawback is that the transition density of the data is assumed to be 0.5 and this will vary 

in real data.  Another drawback is that the method assumes an unrealistic distribution of 

deterministic jitter.  The real distribution will be continuous over the range of the peak-
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to-peak deterministic jitter.  The distribution assumed is a good worst-case approximation 

and it is likely that the true distribution would lead to a lower bit error rate.   

Finally, the bit error rate analysis based on jitter assumes that if a transition occurs 

within the receiver threshold window that it will cause a bit error.  In reality, it probably 

depends on where in the threshold window it occurs as to whether or not a bit error is 

made and there will be a probability density function for whether or not a bit error is 

made versus the transition location within the receiver threshold window.  Despite these 

drawbacks this method should provide an upper bound on the probability of a bit error, 

provides design criteria for deterministic jitter, and provides a means to compare coded 

and uncoded systems.  In reality, the systems specified with a bit error rate of 1.0e-12 

will likely be operating at a lower bit error rate because of these drawbacks.  This may 

present a problem for measuring the bit error rate due to the large amount of time needed 

to count enough bit errors for a valid measurement. 

3.5 Error Correction Code Selection 

The goal of the error correction code design for serial digital multi-gigabit 

communication systems in this project is to lower the bit error rate for a given data rate 

and specified total jitter, or allow the same bit error rate but with more deterministic 

jitter.  This section contains a summary of the specific code requirements as previously 

discussed and a discussion about the choice of error correction code to be implemented. 

3.5.1 Summary of ECC Requirements 

The requirements of the error correction code (ECC) and the parameters of the 

communication channel, the transmitter, and the receiver are summarized in Table 6.  The 
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parameters of the channel, transmitter, and receiver, given in Table 6, are based on the 

XAUI specification and the Altera and Xilinx FPGA device capabilities.  The 

requirements have been established based on the discussion in sections 3.1, 3.2, 3.3, and 

3.4.  The ECC designed in this project will be based on these parameters and 

requirements.   

Table 6 - ECC design criteria. 

 Description Value 

Transmitter rms random jitter 0.18 UI / 14 = 0.0129 UI 

Deterministic jitter at 3.125 Gbps 0.47 UI 

Receiver jitter tolerance 0.65 UI 
Parameters 

Coded data block size Multiple of 8 or 10 bits 

Maximum data block size 128 bits 

Uncoded data block size Multiple of 8 bits 

Maximum decoding latency 120 ns 

Minimum code rate 0.64 

Target code rate 0.79 

Maximum run length of constant 0 or 1 data 75 bits 

Error correcting capabilities Random bit errors 

Target corrected bit error rate (at deterministic 

jitter specification) 
1.0e-17 

ECC Requirements 

Target corrected bit error rate (at 10% increase 

in deterministic jitter specification 
1.0e-12 
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3.5.2  Maximum Run Length Limit 

In order to limit the maximum run length of 0 bits or 1 bits, extra bits must be 

added such that transitions can be forced.  When maximum run length (MRL) coding is 

used in conjunction with error correction coding, the performance of the error correction 

code (ECC) can be affected by the MRL code.  This occurs if the MRL code occurs after 

the ECC on the transmitter side.  The decoding of the MRL code at the receiver can 

multiply single bit errors into multiple bit errors.  In the case of 8B/10B coding, a single 

bit error into the 8B/10B decoder could be multiplied into a multiple bit error out of the 

decoder, or cause a code word to be invalid, or cause a disparity error.  In the latter two 

cases the 8B/10B decoder algorithm cannot even produce a valid output sequence and 

usually just signifies the appropriate error type to the next communication layer.  If the 

MRL code occurs before the ECC at the transmitter, this problem is eliminated but a new 

problem is created.  The problem is that the ECC can then upset the MRL characteristics 

imposed by the MRL code. 

Regarding the problem with having the MRL code before the ECC in the 

transmitter, there are ways to construct the error correction output code word to limit the 

impact on the MRL code as discussed in [32].  These techniques work well with block 

error correction codes.  A block diagram of the proposed coding for the transmission 

system is shown in Figure 16.  The MRL code to be used in this ECC system will be 

designed so that it meets the required MRL constraints and matches the required data 

widths, that is block sizes, on the data source side and the error correction code side. 
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Figure 16 - MRL and ECC system design block diagram. 

3.5.3 Discussion of Code Choice 

The large number of error correction codes available from research going on since 

Shannon presented his first work on digital communications and information theory 

makes code selection difficult for any new application.  Generally error correction codes 

fall into two main categories, block codes and convolutional codes.  There are also 

advanced coding schemes that use concatenated codes and iterative decoding such as 

turbo codes.  The following discussion on selecting a code to use in a serial digital multi-

gigabit communication system begins by narrowing down the choices, and then focusing 
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on the specific type of codes that will be most applicable and making a selection from 

them. 

Turbo codes were developed in 1993 by Berrou, Glavieux, and Thitimajshima 

[22].  The specific code demonstrated had a rate of 0.5 and was able to provide a bit error 

rate of 1.0e-5 at Eb / N0 of 0.7 dB using binary phase shift keying (BPSK) modulation in a 

random error channel.  A convolutional turbo code contains two convolutional codes and 

an interleaver / deinterleaver, and the decoder operates by iteratively going through two 

decoding stages, using soft inputs and soft outputs [22].  At high signal-to-noise ratios, 

the decoded bit error rate for this type of code has been shown to level off at a relatively 

low bit error rate because of the low hamming distance, and increasing the signal-to-noise 

ratio does not further reduce the probability of bit error.  Therefore, the code performance 

is relatively poor at very low bit error rates [33].  Turbo codes based on concatenated 

convolutional codes are not suitable for this application for many reasons.  First, there is 

no soft decoding information available from the transceivers in the Altera and Xilinx 

devices.  The code rate of 0.5 is too low and the decoding latency required for 

convolutional decoding, plus interleaving and deinterleaving, and then iteration of this 

process would be too long.  In addition, the complexity would make it very difficult to 

implement in an FPGA processing bits at multi-gigabit rates.  Also, this application is 

operating at bit error rates much lower than where this code performs well.  

Convolutional turbo codes are thus ruled out. 

Another form of turbo coding described in [34] is to perform iterative decoding 

on two block codes concatenated together.  This has been shown to have good 

performance at low bit error rates and can use a higher code rate.  The complexity for 
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implementation is probably beyond the capabilities of an FPGA for multi-gigabit data 

rates, but more detailed analysis would be needed to determine this for sure.  The main 

problem would still be the latency introduced by the iterative decoding.  This rules out 

block turbo codes. 

Convolutional codes have been used extensively for moderate bit error rate and 

low Eb / N0 applications such as deep space and satellite communications [33].  They are 

different from block codes in that there are not discrete output code blocks that are 

independent of the blocks on either side of them.  Output code words depend on the 

present and previous input code words.  Every output code word consists of n bits and 

every input code word consists of k bits, which is similar to a block code, but one 

additional parameter defining the number of previous input code words an output 

depends on is called the constraint length v.  The performance of the code depends on the 

constraint length v and increases as v increases.  Also, convolutional codes can be 

implemented using hard decisions or soft decisions with a performance increase possible 

by using soft decisions [22].  The performance of convolutional codes at very low bit 

error rates is not widely published.  The sources available seem to consider them in the 

context of moderate bit error rate and high noise applications.  The rates commonly 

discussed are 0.5 or less.  Convolutional codes having rates above 0.75 are uncommon, 

and higher rate convolutional codes appear to be difficult to implement due to decoding 

complexity.  One exception is the use of puncturing, where a lower rate parent code is 

used but specific code bits are punctured or removed prior to transmission, thus resulting 

in a higher rate code.  Punctured codes allow for higher rate convolutional codes while 

using a lower rate decoder because the punctured bit locations are filled in at the receiver 
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with what are called erasure bits that effectively have a level midway between logic 0 and 

1 when soft decisions are used [35].  These aspects of convolutional codes do not make 

them ideal candidates for the serial digital multi-gigabit communication system. 

There are many different ways to decode convolutional codes including the 

maximum likelihood Viterbi algorithm, sequential decoding, and majority-logic decoding  

[35].  Viterbi decoding is optimal but complexity increases exponentially with the 

constraint length v and there are practical limits on how large v can be in real 

implementations [35].  The number of computations required per bit for Viterbi decoding 

is 2
v
.  The decoding delay for a Viterbi decoder can also be long and is h + m where m is 

the memory order of the code and h is the length of a frame usually assumed to be much 

larger than m [35]. Each input bit to a convolutional code is shifted through a number of 

memory stages and each output bit from a convolutional code is a logical combination of  

the contents of the memory stages after each shift.  The longest number of shift stages for 

any of the bits is referred to as the memory order, m and the sum of the shift stages for all 

the bits is referred to as the constraint length v [35].  For an infinite length data stream, 

valid data bits will be transmitted out of a convolutional encoder once all of the shift 

stages are loaded and will continue forever.  For a finite length data stream, data must be 

formatted into frames to be transmitted and extra padding bits must be shifted into the 

encoder after the valid data bits so that the code bits corresponding to those last data bits 

are shifted out.  It is desirable to limit the amount of padding bits in relation to the frame 

size so the amount of overhead that they add to the code rate, referred to as fractional 

loss, is small. This is what is meant by the frame size h [35].  The number of 

computations required for multi-gigabit data rates would be much too large for an FPGA 



  61 

implementation using a reasonable constraint length to achieve the performance 

necessary.  Also, the decoding delay is too long and therefore Viterbi decoding of 

convolutional codes is ruled out. 

Sequential decoding of convolutional codes is less than optimal but since its 

complexity depends on the noise level in the received data and not v, large constraint 

lengths and thus very good performances can be realized.  The decoding complexity is 

variable depending on the noise in the received sequence and averages about 1 to 2 

computations per bit [35].  A drawback is that for noisy received sequences the increased 

number of computations and thus time taken to decode the information can cause buffer 

overflows and data could be lost in practical implementations.  While the processing 

power required for sequential decoding is less than Viterbi, more memory is usually 

required.  The decoding delay for a sequential decoder is the same as that for a Viterbi 

decoder [35].  The processing complexity is still too large to implement at multi-gigabit 

rates, the memory requirements are too great, and the decoding delay is too long.  

Sequential decoding of convolutional codes is ruled out. 

Majority logic decoding of convolutional codes is much simpler than Viterbi or 

sequential decoding but the simplification comes at the expense of code performance.  

Only one computation is required per bit.  The decoding delay is also much smaller than 

that for the Viterbi or sequential decoding and is equal to the memory order m.  For 

applications requiring a large minimum distance to achieve the desired bit error rate 

performance, very long constraint lengths are required and Viterbi or sequential decoders 

may provide better performance to complexity trade offs [35].  It may be possible to 

implement a majority logic decoder with convolutional coding in an FPGA 
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implementation at multi-gigabit data rates and meet the latency requirements.  The 

performance at low bit error rates as previously mentioned is not widely published.  

Because of the unknown performance of convolutional codes at low bit error rates, and 

potential difficulties in implementing even the simpler majority logic decoder in an 

FPGA, block codes are expected to provide a better solution for the serial digital multi-

gigabit communication system. 

Linear block codes are codes that systematically transform a block of k bits into a 

larger block of n bits and thus have a code rate of k/n.  The term block length is used to 

describe n, the number of bits in a coded block for a block code.  The meaning of linear is 

that the result of adding any two code words together with modulo-two additions is also a 

code word.  Linear block codes vary widely in block size, complexity, decoding latency, 

and bit error correction and detection performance.  They can also be applied effectively 

to random error channels, burst error channels, or combinations of the two [35].  Block 

codes have been applied extensively in the area of data storage applications [33].  The 

interesting thing about data storage systems, especially SDRAM storage, is that they 

typically transfer data at data rates in the multi-gigabit range.  For example a typical 

Double Data Rate (DDR) SDRAM interface can run at up to 400 Mbps per data bit or, for 

a common 64 bit wide interface, at 25.6 Gbps.  The other similarity is in the block size 

since the typical SDRAM block size is 64 bits.  The backplane communication channel is 

not very similar to the channel typically used in data storage applications so the criteria 

used to choose a block code is not the same.   Some of the block codes used in the 

SDRAM storage application are Hamming codes, shortened versions of extended 

Hamming codes, and Bose-Chaudhuri-Hocquengham (BCH) or Reed Solomon codes 
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[33].  The specific codes used have error detection and correction capabilities that fall 

into one of the following classes: 

• Single error correcting / double error detecting; 

• Single error correcting / double error detecting / single b-bit byte error 

detecting; 

• Single b-bit byte error correcting / double b-bit byte error detecting. 

A single b-bit byte error-detecting code is one for which data is broken into b-bit 

wide bytes.  Any number of errors within a single byte can be detected by the code.  

Similarly, a single b-bit byte error-correcting code has the ability to correct any number 

of bit errors within a single b-bit byte.  These types of codes are useful in memory 

systems made up of multiple memory chips, each chip storing a certain number of bits at 

each address location.  A failure of a single chip could be detected or corrected with one 

of these codes [33].  This leads to another similarity between SDRAM storage systems 

and serial digital multi-gigabit communication systems and that is the data size being a 

multiple of the typical 8-bit byte. 

For this design project, the BCH code has been chosen.  This type of code has 

relatively low complexity for decoding and allows for correcting random bit errors with a 

high code rate as required by the application [35].  Another characteristic of a cyclic code 

such as the BCH code is that it can be shortened so that a code that matches the data 

length constraints on both the MRL and the SERDES sides (see Figure 16) can be chosen 

without the need to add padding bits.  Other codes that were considered were the Reed 

Solomon code and the simple Hamming code.  The BCH code can provide some 

additional error correction power over a simpler Hamming code.  The Reed Solomon 
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code provides the ability to correct burst errors and byte errors, but these types of errors 

are not anticipated in the backplane communication channel and the Reed Soloman code 

would therefore have more capabilities than needed. 

3.6 Error Correction Code Design 

The code chosen consists of a 48b/51b MRL code and a two-error correcting 

primitive BCH code of order 2
6
.  In this context, order is defined as the number of 

elements in a finite field.  A field is a set of elements and for the binary case the elements 

are 1s and 0s.  Some properties of fields are that it is possible to define addition, 

subtraction, multiplication, and division operations that satisfy commutative, associative, 

and distributive laws [36].  Such a BCH code consists of 63 total bits with 51 data bits 

and 12 parity bits.  The block length of 63 is obtained from 2
6
 – 1, and the minimum 

distance of the code is given by ( 10 ) where t is the number of errors that can be 

corrected [35]: 

12min +≥ td . ( 10 ) 

 

The minimum distance for the (63,51) BCH code is therefore 5.  A single padding bit is 

added to the code word to make it 64 bits, which is a multiple of 16 bits, for easy 

connection to the Altera Stratix GX transceiver.  This padding bit could be used as a 

synchronization bit in a system design, and the implementation of the BCH code in this 

project will toggle this bit between 1 and 0 for each successive code block. 

The data will be encoded and decoded in parallel logic at a much slower clock 

rate than the serial data transfer clock rate.  The output data from the encoder is 64 bits so 
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it can be seen that the serial data clock rate is 64 times the block encoding and decoding 

logic clock rate.  Since all of the data, MRL, and parity bits are available at the same time 

in the slower parallel clock domain, their ordering for actual serial transmission is not 

critical.  The ordering has been chosen to maximize the number of chances for transitions 

to occur in most data sequences by dispersing the MRL code bits and the ECC code 

parity bits throughout the code word as shown in Figure 17. 

Data (48 bits)

MRL Coded Data (51 bits)

MRL Coded Data + BCH Check Bits + Pad Bit (64 bits)

P

Data<47:0>

MRL<2> MRL<0>MRL<1>Data<47:24> Data<23:0>

MRL<1>MRL<2> MRL<0>C<11:9> C<2:0>C<8:6> C<5:3>Data<47:24> Data<23:0>

MSb LSb

MSb LSb

LSb

 

Figure 17 - Code bit order diagram. 

3.6.1 MRL + BCH (63,51) Encoder Design 

The encoder consists of two steps which are the 48b/51b MRL encoder block and 

the BCH encoder block.  Each step takes a single parallel clock cycle for a total encoding 

latency of 2 parallel clock cycles.  A block diagram of the encoder is shown in Figure 18. 
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data_in_i<47:0>
63,51 

BCH 

Encoder

mrl_data<50:0>

pad_bit_i

reset_n_i

block_clk_i

enable_i

data_out_o<62:0>

Encoder Block

51,48 

MRL 

Encoder

ecc_disparity<8:0>

disparity_overflow_o

Delay

clr_run_disparity_i

data_valid_o

data_out_o<63>

Delay

 

Figure 18 - Encoder block diagram. 

All of the inputs and outputs from the block are described in the datasheet in section 9, 

which is Appendix A – ECC Block Datasheet. 

The 48b/51b MRL encoder is based on [37] and contains a running disparity 

register keeping track of the difference between the number of 1 bits and 0 bits that have 

been output by the encoder.  The running disparity is based on the 51 output bits of the 

MRL encoder and on the disparity of the 12 ECC parity bits, which is fed back to the 
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MRL encoder from the BCH encoder.  The running disparity is initially set to 0 and the 

MRL encoder either inverts or leaves alone the 48 input data bits and sets the other three 

MRL bits based on the following rules, which are repeated for each 48-bit block of data 

received by the encoder. 

• If the running disparity is greater than or equal to 0 

o If the disparity of the current 48 bit input data word is greater than 

or equal to 0, then invert the data bits and set MRL bits 0 and 2 to 

0 

o Else leave the 48 bit input data word alone and set MRL bits 0 and 

2 to 1 

• Else if the running disparity is less than 0 

o If the disparity of the current 48 bit input data word is greater than 

or equal to 0, then leave the data bits alone and set MRL bits 0 and 

2 to 1 

o Else invert the data bits and set MRL bits 0 and 2 to 0 

• Set MRL bit 1 to the inverse of MRL bit 2 

The code from [37] is slightly different and works with only two MRL bits instead of 

three.  The maximum run length of the code from [37] is given by ( 11 ) and the 

maximum running disparity is given by ( 12 ) where X is the length of the input data 

word in bits [37].  Thus, 
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25.2LengthRun  Maximum += X
 ( 11 ) 

and 

25.1Disparity Running)25.1( +≤≤+− XX . ( 12 ) 

 

Using the third MRL bit limits the maximum run length of the code designed here to only 

51 bits (prior to FEC); however, it does so at the expense of losing the guarantee of a 

bound on the running disparity.  Because the ECC encoder follows the MRL encoder, and 

the ECC encoder adds an additional 12 parity bits that are never inverted by the MRL 

encoder, there is inherently no bound to the maximum running disparity in this design.  

The MRL design provides a mechanism for limiting the maximum run length of the 

output code word to the coded word length of 64 bits which meets the requirement of the 

design.  It also provides some ability to limit the DC spectral content of the code words 

even though some data patterns could be passed through with such content.  A system 

requiring a limit on the DC spectral content could use the disparity overflow output bit 

from the encoder block to trigger the transmission of some all 0 or all 1 data words that 

would allow the encoder to bring the running disparity back down.  However, this would 

have to be handled outside of the encoder block in this design.  The MRL block that has 

been designed has the advantages of being simple to implement, it provides some control 

of the DC spectral content of the data thus improving the ability to operate with AC 

coupling, and it provides a limit on the maximum run length that meets the requirement 

given in Table 6. 

The encoder for a cyclic block code is based on dividing the polynomial 

representing the input data sequence by the generator polynomial.  The coefficients of the 
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remainder of this division are the parity bits.  Equation ( 13 ) shows this operation, where 

u(X) is the message polynomial, n is the coded data size, k is the data size, a(X) is the 

quotient of the division, g(X) is the generator polynomial, and b(X) is the remainder of 

the division [35].  Thus, 

)()()()( XbXgXaXuX
kn +=−

. ( 13 ) 

 

The degree of b(X) is less than or equal to n – k – 1 which results in a polynomial with n 

– k coefficients.  The generator polynomial for the selected (63,51) BCH code is given in 

( 14 ) [35], where 

1)( 34581012 ++++++= XXXXXXXg . ( 14 ) 

 

The remainder of the division can be computed in digital hardware using a 

feedback shift register with modulo-2 addition, having taps in the positions corresponding 

to the exponents of the terms in g(X).  The remainder is contained in the shift register bits 

after the entire 51-bit input data sequence u(X), labeled as D(50:0) in Figure 19, is shifted 

in, most significant bit (MSb) first.  The circuit that performs this computation of the 

parity bits for the (63,51) BCH code is shown in Figure 19 [35].  The circuit in Figure 19 

does not require logic 0 bits to be appended to the end of the data word to shift out the 

parity bits at the end.  After 51 shifts, the circuit will simply contain the 12 parity bits in 

the registers b0 through b11. [35]. 
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b0 b1 b2 + b3 +

b4+b5b6b7+

b8 b9 + b10 b11 +

D(50:0) (MSb First)
 

Figure 19 - (63,51) BCH code encoder circuit. 

A direct hardware implementation of the circuit in Figure 19 would require that shift 

registers be constructed in hardware and data shifted at a clock frequency equal to the 

data rate of transmission.  For multi-gigabit data transmission this is not possible in an 

FPGA.  However, if all of the input data bits are available at once then the output of each 

memory cell within the encoder shown in Figure 19 can be computed as a modulo-2 sum 

of certain input data bits keeping in mind that every time the same input data bit gets 

added to itself, the sum is zero in modulo-2 addition.  The expression for each of the 12 

parity bits, or memory cell outputs for the encoder shown in Figure 19, was calculated 

symbolically using Mathcad.  The resulting expressions for b8 and b9 each contained the 

largest number of modulo-2 additions at 31, and the resulting expression for b8 is shown 

in ( 15 ), where 
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.

 ( 15 ) 

 

An equation of this form could be determined and implemented directly in hardware for 

each of the parity bits.  VHDL provides a mechanism for generating combinational logic 

for multiple simultaneous shifts of a shift register such as this using a FOR GENERATE 

statement, and then the logic synthesis tool will automatically create the required 

equations such as in ( 15 ), so for purposes of implementation there is no need to 

determine these analytically. 

3.6.2 General BCH Decoding Discussion 

Encoding of the binary BCH codes is straightforward as has been described.  

Decoding is not as straightforward and there are several methods available for decoding 

binary BCH codes.  Most of the algorithms involve three main steps as follows [35]: 

• Compute the syndromes; 

• Determine the error-location polynomial; 

• Find the roots of the error-location polynomial as the error locations. 

The syndrome computation is similar to the encoding process and is fairly 

straightforward.  The syndrome computation is discussed in more detail in section 3.6.3.  

Determining the error-location polynomial coefficients is not as straightforward and there 

are at least three methods for doing so.  The first is Peterson’s direct-solution decoding 

algorithm which involves the direct solution of the equations resulting from Newton’s 

identities [38].  The second is the Berlekamp algorithm which iteratively solves for the 
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error-location polynomial coefficients [38].  The third method is Euclid’s algorithm 

which recursively finds the greatest common divisor between two polynomials [38].   

The Peterson direct-solution method is the simplest to implement for small values 

of t, but its complexity grows with the square of t, the number of errors that can be 

corrected, while the Berlekamp algorithm’s complexity grows linearly with t [38].  The 

Berlekamp algorithm is the most efficient in general, but the difference between it and 

the Euclidean algorithm is not as great as between it and the Peterson direct-solution 

method [38].  The Peterson method is reasonable for decoders that correct up to 6 or 7 

errors, while the Berlekamp and Euclidean algorithms are reasonable for decoders that 

correct many errors [38].  The Berlekamp algorithm is usually preferred to the Peterson 

method for decoders correcting more than 3 or 4 errors [36]. Another algorithm for 

decoding binary BCH codes uses frequency domain decoding which does not seem to be 

very straightforward [38].  The Peterson direct-solution method has been chosen in this 

design because of its efficiency and ease of implementation for a small t=2 error 

correcting code. 

The error search is done by finding the roots of the error-location polynomial.  

The degree of the error-location polynomial is equal to the number of errors that the code 

can correct.  A direct solution approach can be taken for BCH codes that correct 1 or 2 

errors by using Galois field arithmetic to directly solve for the roots of the error-location 

polynomial [36].  The other method that is commonly used is to try all the elements in the 

Galois field of the code in the error-location polynomial and see if the result of the 

polynomial is 0.  If it is, then that element must be a root.  This systematic approach is 

called a Chien search [36].  The direct solution approach would work for the code of this 
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design, but the Chien search is straightforward, easy to implement, and can be easily 

extended to codes in future designs with the ability to correct more than 2 errors. 

BCH codes have the ability to correct more than t errors for certain error patterns.  

All of the decoding algorithms discussed, and the one implemented in this design, correct 

t errors.  According to [36], complete decoding algorithms for all double- and some 

triple-error correcting BCH codes are available.  The BCH code in this design will 

correct all two-error patterns and detect some error patterns of greater than two errors. 

3.6.3 MRL + BCH (63,51) Decoder Design 

The decoder consists of two main stages which are the BCH decoder block and 

the 48b/51b MRL decoder block.  The MRL decoder takes a single clock cycle.  The 

BCH decoder has three stages, the syndrome computation, the error-location polynomial 

determination, and the error-location computation each taking 1 clock cycle for a total of 

3 clock cycles.  The total decoding latency is 4 clock cycles.  A block diagram of the 

decoder is shown in Figure 20.  All of the inputs and outputs from the block are described 

in the datasheet in section 9, which is Appendix A – ECC Block Datasheet. 

The syndromes Si are computed by dividing the received message polynomial by 

the minimal polynomial φi(X) evaluated at α
i
 [35]. A Galois field contains a set of 

minimal polynomials, one for every element in the field, where each minimal polynomial 

is the lowest degree polynomial that the evaluation of at that element results in the 0 

element [36].  An equation describing this operation where r(X) is the received message 

polynomial, ai(X) is the quotient of the division, and bi(X) is the remainder of the division 

is given in ( 16 ) [35], where 
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)()()()( XbXXaXr iii += φ . ( 16 ) 

 

For a BCH code there are 2t syndromes where t is the number of errors that can be 

corrected by the code.  For the (63,51) BCH code, there are 4 syndromes [35].   

Syndrome 

Computation

Error-Location 

Polynomial 

Determination

rcv_word_2<50:0>

data_in_i<62:0>

Error-Location 

Computation

s1<5:0>

s2<5:0>

rcv_word_3<50:0>

sigma1<5:0>

sigma2<5:0>

num_errs<1:0>

corrected_word<50:0> 48b / 51b 

MRL 

Decoder

data_out_o<47:0>

error_cnt_o<1:0>

block_clk_i

pad_bit_o

reset_n_i
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Decoder Block

s3<5:0>

mrl_error_o

Delay
data_in_i<63>
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Figure 20 - Decoder block diagram. 
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For Galois field GF(2
6
), the minimal polynomials of α, α

2
, and α

4
 are the same.  

The minimal polynomials of α, α
2
, α

4
, and α

3
 are listed in ( 17 ) [35].  Thus, 

                       

6

4,2,1 1)( XXX ++=φ
 

and 

642

3 1)( XXXXX ++++=φ . 

( 17 ) 

 

The remainder of the division, bi(X), can be computed using a feedback shift register 

circuit in digital hardware.  Two such circuits are needed since there are two different 

minimal polynomials.  Since both minimal polynomials are degree 6, the remainders are 

both degree 5 and are given by ( 18 ).  The coefficients in this equation, b0 through b5 

and B0 through B5, are functions of the received word divided by the corresponding 

minimal polynomial [35].  Thus, 

5432

4,2,1 543210)( XbXbXbXbXbbXb +++++=

 

and 

5432

3 543210)( XBXBXBXBXBBXb +++++= .

 

( 18 ) 

 

The syndromes are computed as shown in ( 19 ) where α
i
 is an element in GF(2

6
) [35].  

Thus, 
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33 αbS = , 
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)( 4

4,2,14 αbS = . 

( 19 ) 

 

Expanding the equations in ( 19 ) results in the 6-bit syndromes computed from the 

coefficients of the remainders of the two polynomial divisions by φ1,2,4(X) and φ3(X) and 

the result is shown in ( 20 ), where 

5432

1 543210 ααααα bbbbbbS +++++= , 

5432

2 5)52(4)41(3)30( ααααα bbbbbbbbbS ++++++++= , 

5432

3 53)531(42)420( ααααα BBBBBBBBBBS +++++++++= , 

and 

5432

4 5)541()52()532(4)430( ααααα bbbbbbbbbbbbbS ++++++++++++= . 

( 20 ) 

 

One interesting thing to note is that based on the way these are calculated, S2 is equal to 

S1 squared and S4 is equal to S2 squared.  For the Peterson direct solution method for a 2 

error correcting binary BCH code, only the odd syndromes are required to find the error-

location polynomial [36].  However, as will be seen later, S1 squared will be required in 

the error-location polynomial stage, so to avoid having to perform this multiplication step 

in the error-location polynomial stage, S2 will be computed in the syndrome computation 

stage.  A block diagram of the syndrome computation circuit is shown in Figure 21.  The 
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shift register is implemented to shift the entire 63 bit received code word through on a 

single parallel data clock cycle and the addition blocks are also performed on that same 

clock cycle [35]. 

b0 b1 b2 b3 b4 b5++
rcv_word1<62:0> 

(MSb First)

s1<5:0>

+

+

+

s2<5:0>

0
1
2
3
4
5

0

1

2

3

4

5

B0 B1 B2 B3 B4 B5++

+

+
s3<5:0>

0

1
2

3

4
5

+ +

 

Figure 21 - Syndrome computation circuit. 

The next step of the BCH decoder process is the computation of the error-location 

polynomial.  The error-location polynomial in general form for any BCH code is given in 

( 21 ) [35], where 

v

v XXXX σσσσσ ++++= ...)( 2

210 . ( 21 ) 
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The values of the coefficients σi are elements of the Galois field from which the BCH 

code was formed and the roots of ( 21 ) are the bit position locations of the errors in the 

received code word.  Equation ( 22 ) shows the error-location polynomial for the (63,51) 

BCH code and the values of the coefficients solved using Peterson’s direct-solution 

method [36].  Thus, 

2

211)( XXX σσσ ++= , 

                                          11 S=σ , 

and 

2

1

32

1

1

3

2 S
S

S
S

S

S
+=+=σ . 

( 22 ) 

 

The division in ( 22 ) can be performed by inverting S1 and multiplying it by S3.  The 

inversion is performed by a lookup table built from combinational logic using the 

relationship in ( 23 ) for inversion in GF(2
6
).  For the purposes of this design, inversion of 

the 0 element will result in the 0 element even though it is technically undefined [36].  

Thus, 

                                            undefined=−10 , 

                                            00 αα =− , 

and 

1         63 ≥= −−
i

ii αα . 

( 23 ) 

 

The addition is defined as bitwise modulo-2 addition.  The multiplication is defined by    

( 24 ) and is performed using the circuit in Figure 22 [36].  The circuit is created using 
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combinational logic to perform all 6 shifts on one clock cycle so that it completes within 

a single clock cycle in this design.  Thus, 

                                             00 =⋅ iα , 

                                             
jiji += ααα , 

and 

                                              
012 αα =−m

 

where 

22,0 −≤≤ m
ji . 

( 24 ) 

 

  

Figure 22 - GF(2
6
) multiplier circuit. 
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A block diagram for the whole error-location polynomial computation step is shown in 

Figure 23.  One last thing to note about this step is that the values of the error-location 

polynomial coefficients indicate how many errors are in the received word by the 

following rules [36]: 

• If S1 = 0 and S3 = 0 then there are no errors; 

• Else if S1 = 0 and S3 ≠ 0 then there are 3 or more errors; 

• Else if S1 ≠ 0 and σ2 = 0 then there is 1 error; 

• Else there are 2 or more errors. 

These rules are evaluated in this stage and the result passed to the error search stage for 

use in determining how many errors have occurred. 

 

 

Figure 23 - Error-location polynomial computation circuit. 
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The final stage of the BCH decoder is the error-location search.  This search is 

performed by trying each power of α successively in the error-location polynomial as 

demonstrated in ( 25 ).  This algorithm is referred to as a Chien search [35].  Therefore, 

           63  to1  iFor = , 

           ( ) ( )2

211 iii ασασασ ⋅+⋅+= . 

           ( ) 0 If =iασ , then an error has occurred in bit location (63-i). 

( ) 0 If ≠iασ , then an error has not occurred in bit location (63-i). 

( 25 ) 

 

The circuit that implements this is shown in Figure 24. 

The final stage of the decoder design is the (51,48) MRL decoder.  The decoding 

operation is simple and is based on the following rules: 

• If MRL<2:0> = 010 then invert the 48 data bits; 

• Else if MRL<2:0> = 101 then leave the 48 data bits alone; 

• Else set the mrl_error_o signal to a 1 to indicate a decoding error. 
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Figure 24 - Error-search circuit. 
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4 Bit-Error-Rate-Test Functional Block 

The primary measure of performance of a digital communication system is the bit 

error rate.  Bit error rate (BER) is defined by ( 26 ) [35], where 

Number of Bit Errors

Total Number of Bits
BER = . ( 26 ) 

 

When comparing bit error rates between systems that include error correction coding and 

uncoded systems, it is necessary to make the comparison based on the BER for the 

information bits rather than the BER for transmitted bits which, for the coded system, 

will include redundant bits. 

There is a lot of commercially availably test equipment for measuring bit error 

rate and characterizing serial digital multi-gigabit communication systems.  Some 

vendors that have such equipment are Agilent Technologies, Synthesys Research, and 

Anritsu.  The product offerings contain a lot of advanced features such as bit error 

location tracking, eye diagram creation, and jitter measurement [39].  The main drawback 

of such test equipment is that it is very expensive.  An alternative to such expensive test 

equipment is to have built-in self test designed into the digital hardware in a serial digital 

multi-gigabit communication system.  A field programmable gate array (FPGA) provides 

a good platform for built-in self test in these systems because it is configurable and easy 

to integrate such a self test block into the data path at any desired location to test not only 

the physical performance of the link but also to test coding and higher layer protocol 

blocks. 
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The development of the bit-error-rate-test functional block has been broken into a 

few steps.  The first was to investigate how bit error rate measurements are made.  The 

next was to determine what types of data patterns the block should support and identify 

which data patterns would be most useful in certain types of measurements such as jitter.  

After selection of appropriate data patterns, the ability to implement those patterns at 

multi-gigabit data rates was evaluated and then the block was designed and implemented. 

4.1 Bit-Error-Rate-Test Measurement Background 

Bit errors in a serial digital multi-gigabit communication system occur as the 

result of random Gaussian distributed noise.  It is therefore impossible to predict exactly 

when they will occur because the errors will have a random distribution.  Statistical 

methods are required to measure bit error rate.  Three methods have been investigated for 

possible use in this project.  The first method provides a confidence level for the true bit 

error rate being within some stated percent error of the bit error rate measurement based 

on the number of bit errors that were counted in that measurement. The second method 

provides a confidence level for the true bit error rate being better than a given bit error 

rate if a system is measured without any bit errors for a given amount of time.  The third 

method provides an estimate and confidence level for the range of the true bit error rate 

based on making multiple measurements. 

A binomial distribution can be used to describe the probability of counting a 

certain number of bit errors in a certain number of bits.  The binomial distribution applies 

when the following conditions are met [40]: 

 

 



  85 

• Bit errors are random; 

• There are two outcomes, either a bit is correct or in error; 

• All bits have the same probability of being in error; 

• The number of bits measured must be the same regardless of the outcome of each 

bit measurement. 

The first three conditions are met based on the jitter model of bit error rate described in 

section 3.4.4 and the last condition is a requirement of the measurement.   

For a binomial distribution with a very large value of b (the number of bits 

measured) and with a very small value of p (the probability of an event such as a bit 

error), the Poisson distribution is a good approximation of the binomial distribution [40].  

Some investigation using Mathcad showed that for a bit error rate of 10
-12

, the binomial 

distribution could not be computed for very large values of b, the number of bits over 

which the distribution applies, to get enough errors to be statistically significant.  The 

Poisson distribution did not suffer this problem, so it has been used in this analysis.  For 

bit error rate applications, the Poisson distribution has a discrete probability density 

function that describes the probability of counting a certain number of bit errors in a 

certain number of bits.  The distribution is given by ( 27 ) [40], where 

bp ×=λ  

and 

!
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In ( 27 ), λ is a defined parameter of the Poisson process, p is the probability of a bit 

error, r is the number of bit errors counted when b bits are measured, and Pr(R=r) is the 

probability that the number of bit errors counted, R, will be equal to r when b bits are 

measured.  The mean and standard deviation for the Poisson distribution are given in       

( 28 ) [40], where 

λ=mean  

and 

                                                   λσ = . 

( 28 ) 

 

Assuming that the measured number of errors is Poisson distributed, an inference 

can be made about the accuracy of a given measurement based on the number of errors 

that were measured.  This is accomplished using ( 29 ) [40], where 

∑
⋅+

⋅−=

==
RerrR

RerrRi

iRC )Pr( . ( 29 ) 

 

In ( 29 ), C is the confidence that the measured number of bit errors, R, is within the 

fractional error +/- err of the number of bit errors that would be expected based on the 

actual average bit error rate.  For example, a particular measured bit error rate might be 

stated as being within +/- 5% of the actual bit error rate, with 90% confidence.  One thing 

to note is that the value of err must either be chosen so that the limits of the summation in 

( 29 ) are integers, or those limits must be rounded.  Any rounding would introduce some 

error.  For a data rate of 3.125 Gbps and a bit error rate of 10
-12

 some values of C, err, 
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and test times required to make the measurements are shown for different values of R in 

Table 7. 

Table 7 - Measurement accuracy versus number of bit errors measured, and corresponding test 

times, for 3.125 Gbps data rate and measured BER of 10
-12

. 

R (number of errors 

that must be 

measured) 

Err (+/- error 

percentage between 

the measured and true 

bit error rates) 

C (confidence that 

the measured bit 

error rate is within 

+/- Err % of being 

accurate) 

Average test time 

required to make the 

test (hr) 

10 10% 36.4% 0.889 

10 30% 73.4% 0.889 

50 10% 56.3% 4.44 

50 20% 86.3% 4.44 

100 10% 70.7% 8.89 

100 20% 96.0% 8.89 

400 5% 69.5% 35.56 

400 10% 95.7% 35.56 

1000 5% 89.0% 88.89 

1000 10% 99.9% 88.89 

 

Even for high data rates, the test times get quite long for a reasonable amount of 

confidence in the measurement for a bit error rate of 10
-12

, as shown in Table 7.  If the 

system was actually operating with some noise margin above and beyond that required 

for 10
-12

 operation, the true bit error rate would be even less, and test times to measure 

this lower bit error rate at a particular confidence level could greatly increase.  In this 

situation, test times to merely demonstrate that the bit error rate is lower than 10
-12

 (rather 

than to measure the lower bit error rate) would not in general be greater than the test 

times needed for the system that operates without the noise margin.  Bit error rate testing 

to demonstrate compliance with a stated limit is discussed in the next paragraph. 

The second method provides a way to determine that the bit error rate is below 

some specified threshold with a certain amount of confidence.  This method provides an 

improvement on test times, but does not allow exact measurement of the bit error rate.  
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This is usually sufficient in real designs since most design requirements are that the 

system operate at a bit error rate that does not exceed some level.  For low bit error rate 

systems, this method is often the best choice.  The confidence that a system is operating 

below some bit error rate threshold is given by ( 30 ) [41], where 

bfBER

C
T

×

−−
=

)1ln(
. ( 30 ) 

 

In ( 30 ), T is the time that the test must be conducted without any bit errors, C is the 

confidence that the true bit error rate is below a specified bit error rate BER, and fb is the 

data rate at which the system is operating.  Table 8 shows some test times required for 

different confidence levels and different values of specified bit error rate for a data rate of 

3.125 Gbps. 

Table 8 – Test time versus specified bit error rate threshold and confidence, at 3.125 Gbps. 

BER (maximum bit 

error rate) 

C (confidence that the 

true bit error rate is 

below the maximum bit 

error rate) 

T (time required of bit 

error free measurement 

given C and BER) (hr) 

10
-12

 70% 0.107 

10
-12

 95% 0.266 

10
-12

 99.9% 0.614 

10
-15

 70% 107.0 

10
-15

 95% 266.3 

10
-15

 99.9% 614.0 

10
-17

 70% 10702.0 

10
-17

 95% 26628.7 

10
-17

 99.9% 61402.3 

 

From Table 8, test times for determining if a bit error rate is below 10
-12

 are vastly 

improved relative to those in Table 7 for measuring the bit error rate.  Test times for 

determining if the bit error rate is below 10
-15

 span several days, which might be plausible 
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for some testing applications, but test times for determining if the bit error rate is below 

10
-17

 are greater than one year and would therefore be prohibitive. 

The third method uses multiple tests of the same duration and assumes that the 

results are randomly distributed around the true bit error rate.  Using statistical methods, a 

range of the bit error rate can be determined with a certain confidence interval.  Ideally, a 

very large number of tests would be conducted and the normal distribution would apply 

to the results.  Since the time required to count even small numbers of errors can be quite 

large for very low bit error rates, it is not usually practical to conduct a very large number 

of tests.  Another factor is that the standard deviation of the bit error rate measurements 

will not usually be known, especially for a newly designed system.  For cases where 

statistical inferences are made based on a limited number of tests and also on a standard 

deviation and mean estimated from a set of sample tests, the Student t-distribution 

applies.  This distribution takes into account the uncertainty of the standard deviation 

calculated from the test samples [40]. 

When using the t-distribution, a number of tests are conducted for a fixed duration 

and the number of errors is counted for each test.  The mean and standard deviation of the 

number of errors counted in the tests is computed with ( 31 ) and ( 32 ) respectively [40], 

where 

n

x

x

n

i

i∑
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( 31 ) 

and 
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In ( 31 ) and ( 32 ), the xi values are the numbers of errors counted in the tests and n is the 

number of tests conducted.  A value then is found for the t-distribution from a computed 

table or computer program at a certain confidence level and a range for the bit error rate, 

based on these measurements, is then calculated using ( 33 ) [40], where 

n

s
txBER

n

s
tx ⋅+≤≤⋅− 11 . ( 33 ) 

 

In ( 33 ), t1 is the value of the t-distribution for the desired confidence interval, x  is the 

mean of the error count samples, and s is the standard deviation of the error count 

samples. 

This method allows for shorter test times per test than the first method, but since 

multiple tests are required the actual test time will be similar to the first method.  There 

may be some instances where this method has advantages, but generally it is just another 

way of approaching the determination of bit error rates from measurements. 

4.2 Bit-Error-Rate-Test Data Patterns 

The sources used to find appropriate bit-error-rate-test (BERT) data patterns to 

use in serial digital multi-gigabit communication systems were commercially available 

test equipment and industry recognized standards and recommendations.  All test 

equipment investigated provided for relatively short programmable word patterns and 
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relatively long pseudorandom bit sequences, both of which are repeated periodically.  An 

example of a BERT for serial digital multi gigabit communication systems is the 

BERTScope 7500A from Synthesys Research [39].  The datasheets for the test equipment 

specify the details of some specific pseudorandom bit sequences (PRBSs), and those 

sequences are also specified in [42]. 

The patterns that have been chosen to be implemented in this design are listed in 

Table 9 with some details about each pattern. 

Table 9 - Data patterns selected for BERT block design. 

Pattern Length (bits) Length in 

Time for 

3.125 Gbps 

Generator 

Polynomial for 

LFSR 

Max 0s 

Run 

(bits) 

Max 1s 

Run 

(bits) 

Source 

Programmable Word 8 – 64 bits 2.56 ns – 

20.48 ns 

NA 64 64 NA 

2
11

 – 1 PRBS 2047 655.04 ns X
11

 + X
9
 + 1 10 11 [42] 

2
31

 – 1 PRBS 2,147,483,647 687.2 ms X
31

 + X
28

 + 1 30 31 [42] 

 

The PRBS patterns are generated using linear feedback shift registers (LFSRs) with the 

feedback taps in the locations corresponding to the exponents on the terms in the 

generator polynomial.   

4.3 Bit-Error-Rate-Test Block Design 

The bit-error-rate-test block consists of two separate blocks, the pattern generator 

and the receiver.  The pattern generator generates the pattern and the receiver 

synchronizes to the pattern and then counts bit errors in the received data after 

synchronization. 
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4.3.1 Bit-Error-Rate-Test Pattern Generator 

The pattern generator block can generate any of the three selected patterns 

identified in Table 9.  A functional block diagram for the pattern generator is shown in 

Figure 25.  The inputs and outputs are described in the datasheet in section 10, which is 

Appendix B – BERT Block Datasheet. 

2
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Figure 25 - BERT pattern generator block diagram. 
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The data word size of the pattern generator is configurable to values between 8 bits and 

64 bits.  The data word pattern generator simply captures a data word x+1 bits wide into a 

register, where x is a parameter used in the pattern generator shown in Figure 25, and 

then sends that word out on every clock cycle of word_clk_i.  It is possible for the data 

word to be static or it can change on every clock cycle of word_clk_i in which case a 

custom user defined data pattern could be generated. 

The two PRBS data pattern generators work in a very similar fashion.  Each is 

constructed using a LFSR as shown in Figure 26 and Figure 27 [42]. 

 

Figure 26 - 2
11

 - 1 PRBS LFSR block diagram, for P(X) = X
11

 + X
9
 + 1. 

 

Figure 27 - 2
31

 - 1 PRBS LFSR block diagram, for P(X) = X
31

 + X
28

 + 1. 

Since the pattern generator block must operate at the word clock rate and not at the bit 

clock rate, the hardware implementation is not a simple LFSR as shown.  In hardware the 

LFSR for each pattern must be simultaneously shifted x+1 times for each clock cycle of 

the word clock.  This is accomplished with combinational logic.  The hardware must 

compute the next bit value for each register in the LFSR after x+1 shifts, and all x+1 of 

the output bits within a single clock cycle of the word clock.  For the 2
11

 – 1 generator, 

the worst case equation for each of these calculations was computed symbolically for a 

word size of 64 bits using Mathcad and is given in ( 34 ), where 
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8107931520 bbbbbbbbb next ⊕⊕⊕⊕⊕⊕⊕=  

and 

          810315_ 38 bbbbboutdata ⊕⊕⊕⊕= . 

( 34 ) 

 

For the 2
31

 – 1 generator, the worst case equation for each of these calculations was 

computed similarly and is given in ( 35 ), where 

202623290 bbbbb next ⊕⊕⊕=  

and 

                             27302_ 59 bbboutdata ⊕⊕= . 

( 35 ) 

 

The 2
11

 – 1 pattern generator actually requires more combinational logic for each bit, but 

only contains 11 shift register bits versus 31 for the 2
31

 – 1 PRBS generator.  For 

hardware implementation in VHDL it is not required to know the equations for all of the 

next shift register bits and output data bits because a for loop can be used in which the 

synthesis tools will automatically convert into the correct equations. 

4.3.2 Bit-Error-Rate-Test Receiver 

The receiver block can synchronize to and count errors in any of the three selected 

patterns.  A functional block diagram for the receiver is shown in Figure 28.  The inputs 

and outputs are described in the datasheet in section 10, which is Appendix B – BERT 

Block Datasheet. 
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Figure 28 - BERT receiver block diagram. 

The BERT receiver block consists of several sub-blocks including the input 

buffer, the pattern generators, the error comparators and counter, the synchronization and 
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control block and the output registers.  The basic process flow of the BERT receiver 

block is shown in Figure 29. 

 

Figure 29 - BERT receiver process flow diagram. 

The first stage of the receiver is the input buffer stage.  There are two constraints on the 

input buffer size.  For the programmable word pattern, the pattern could start anywhere 

within an input data word and continue for x+1 bits.  In order to search for and be assured 

of finding the data word in the buffer at least two data words must be in the buffer.  For 

the PRBS patterns, the pattern generators must be seeded with the received data and then 

shifted x+1 times on a single clock cycle of the word clock, comparing the output data 

from the LFSRs to the received data.  The 2
31

 – 1 PRBS pattern has 31 shift register 
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stages so it requires 31 bits to seed it.  Therefore, the second requirement is that the 

length of the buffer be at least 31 bits long.  Setting the buffer size to 4 data words and 

limiting the size of a data word to between 8 bits and 64 bits accomplishes both of these 

requirements.  In the design, two additional stages were added to the buffer because it 

takes one clock cycle to load the LFSR and one clock cycle to perform the first shift of 

the LFSR.  So in order to compare the output of the LFSR with the received data, the data 

must be saved for two additional clock cycles, thus, the two additional buffer stages.  So 

the buffer in the design contains 6 word stages for a total of 48 registers for an 8-bit data 

word and 384 registers for a 64-bit data word.  For an 8-bit data word there is very little 

wasted space in the buffer.  However, for anything larger than a 31-bit data word, only 

one buffer stage is required for seeding the LFSRs and in that case three of the buffer 

stages would be wasted.  The number of wasted registers in these cases would be at most 

192 for a 64-bit word size.  The design could be optimized but, 6 buffer stages are used 

regardless of the word size for simplicity of implementation. 

For the PRBS patterns, the receiver block contains the same pattern generator 

block as in the BERT pattern generator block described in section 4.3.1.  Once 

synchronization occurs, the pattern generators can be shifted x+1 times per clock cycle of 

the word clock, to generate the expected receive data for comparison to the received data.  

For the programmable word pattern, the receiver block contains a register that captures 

the expected data word on the input signal data_word_i. 

The synchronization and control block is a state machine that controls all of the 

enables and other control signals inside the BERT receiver.  For the PRBS patterns, the 

synchronization process involves seeding the appropriate PRBS pattern generator and 
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then counting bit errors over a fixed interval.  If the bit error rate is less than a threshold, 

then synchronization has occurred and the block allows the error counter and word 

counter to start counting.  For the programmable data word pattern, the synchronization 

process involves choosing a start index in the input data buffer and comparing the bits in 

the input data buffer starting at that index and continuing for x+1 bits after that to the 

expected data word.  If the bit error rate is less than a threshold, then synchronization has 

occurred and the block allows the error counter and word counter to start counting.  If the 

bit error rate is greater than the threshold, then synchronization has not occurred and the 

process will be repeated with the starting index incremented by 1.  The starting index will 

be incremented over the range of 0 to x and then wrapped back to 0.  For both types of 

patterns, the synchronization and control block continues monitoring the bit error rate of 

the received data over fixed intervals and if the bit error rate exceeds a certain threshold, 

then synchronization is lost and the block tries to resynchronize.  If synchronization is 

lost, a counter is incremented to keep track of the number of times synchronization has 

been lost and it is available as an output on the signal sync_loss_cnt_o.  The error counter 

and word counter are disabled during resynchronization.   

The block is designed so that the fixed interval and the bit error rate thresholds for 

synchronization and losing synchronization are programmable.  Normally the bit error 

rate threshold for synchronization will be set much lower than the bit error rate threshold 

for loss of synchronization to allow for some hysteresis [43].  The state machine for the 

synchronization and control block is shown in Figure 30. 
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Figure 30 - Synchronization and BERT control block state machine. 

Once synchronization has occurred, the synchronization and control block enables 

the error counting and word counting.  The multiplexer (mux) is selected for the correct 

error count and an accumulator adds the error count on each clock cycle to the 

accumulated error count with the new value being captured into the error count register 
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on each clock cycle.  The word counter is incremented by one on every clock cycle.  The 

word counter block also has a comparator in it that compares the counter value with an 

input value specifying the number of words for which the test should continue.  Once the 

word counter reaches that number, the test is complete and the synchronization and 

control register will remain in the idle state until the block is reset.  The block can also be 

put into an open ended test mode that does not stop after the maximum word count is 

reached by setting the run_forever_i input signal to a logic high. 
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5 Implementation and Integration Results 

This section describes the hardware design that integrates the bit-error-rate-test 

(BERT) block and the error correction code (ECC) block together with a multi-gigabit 

serial transceiver in the Altera Stratix GX device.  The implementation is specific to the 

Altera Stratix GX development board.  Some results from testing of the integrated blocks 

are also presented. 

5.1 Implementation Design 

The design integrates the ECC and BERT blocks described in sections 3 and 4 

with the serial transceiver in the Altera Stratix GX device.  In order to compare bit error 

rates for coded versus uncoded data, two designs were actually implemented.  One 

included a block to perform both ECC and BERT functions and the other only included 

the BERT block.  This section describes the implementation of the version with the ECC 

and BERT block in detail, but the BERT-only version is very similar.  A top level block 

diagram of the design is shown in Figure 31.  The design implements both transmit and 

receive paths and the intent is that they will be connected in an external loopback 

configuration. 

There are several sub blocks in this design.  The major blocks are the BERT + 

ECC transmit block and the BERT + ECC receiver block and those will be described in 

more detail.  The Altera Stratix GX transceiver block is contained within the Altera 

Stratix GX FPGA.  This design configures the block in x16 data width mode and for a 

serial data rate of 3.125 Gbps.  The reference clock provided to this block is 156.25 MHz 
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on the xtal1_sgx_i signal input to the FPGA from the development board.  The block is 

configured to multiply this clock to the data rate with its internal PLL.   

 

LED Decode 

Logic

gx_led<7:0>_o

gx_dig1<a,b,c,d,e,f,g,dp>_o

gx_dig2<a,b,c,d,e,f,g,dp>_o

Test Control 

Logic

xcvr_clk_i

enable_i

bert_pattern_i<1:0>

xmit_data_valid_o

test_done_o
err_cnt_o<x:0>

sync_status_o

bit_slip_o

sync_detect_o

rx_digital

_reset(0)

inclk(0)

coreclk_out(0)

rx_out<15:0>

tx_out(0)

Altera Stratix GX 

Transceiver Block

tx_digital

_reset(0)

rx_in(0)

rx_bitslip(0)

tx_in<15:0>

gx_pb_dev_clr_n_i

xtal1_sgx_i

gx_pb_dev_clr

gx_dip<7:0>_i

disparity_overflow

bert_pattern<1:0>

test_en

rcv_enable

reset_n_i

block_clk_i

transmit_data_o<15:0>

disparity_overflow_o

BERT + ECC Transmit Block

receive_data_i

xmit_data<15:0>

reset_n_i

receive_data_i<15:0>

xcvr_clk_i

enable_i

bert_pattern_i<1:0>

block_clk_i

word_cnt_o<y:0>
sync_loss_cnt_o<z:0>

BERT + ECC Receiver Block

rcv_data<15:0>

Altera Fast 

PLL Block

inclk0
xcvr_out_clk

pllena

1

areset

c1

c0

locked

word_clk_pll_lock

ECC / BERT Top Level Interconnection Block

test_duration<y:0>

bit_slip

sync_detect

sync_status

test_done
err_cnt_o<x:0>

x = ERR_CNT_SIZE - 1

y = WORD_CNT_SIZE - 1

z = SYNC_LOSS_CNT_SIZE - 1

test_duration<y:0>

data_word_i<47:0>

data_word<47:0>

xmit_data_valid_o

xmit_data_valid

err_cnt_overflow_o
err_cnt_overflow

rx_cruclk(0)

c2
rx_cruclk

xcvr_clk

block_clk

tx_coreclk(0)

xcvr_rx_clk_i

rx_clkout(0)

xcvr_rx_clk

dec_mrl_err_o
dec_err_cnt_o<1:0>

 

Figure 31 - BERT and ECC integration design top level block diagram. 
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In addition to the reference clock there are several other clocks used in the design.  

A divide-by-16 version of the data rate clock inside the transceiver is provided as an 

output as coreclk_out (195.3125 MHz).  The transceiver also provides a divide-by-16 

version of the clock recovered from received data stream as an output on rx_clkout 

(195.3125 MHz).  The transceiver is configured such that the 16 bit receive data is phase 

aligned with this clock. 

The coreclk_out is connected to a PLL in the stratix GX device to generate all the 

other clocks needed in the design.  The first clock, rx_cruclk, is divided by 5/4 to match 

the reference clock frequency (156.25 MHz) and this is connected to the transceiver as 

the clock used to train the receive PLL.  To operate at 3.125 Gbps, the transceiver 

requires a separate reference clock input, so that is why the xtal1_sgx_i clock couldn’t be 

used.  The next two clocks, block_clk and xcvr_clk are phase aligned with each other.  

The block_clk is a slower parallel clock for the encoder and decoder and for the BERT 

generator and receiver, and is a divide-by-64 version of the data rate clock (48.828125 

MHz).  The xcvr_clk matches the parallel data rate coming out of the transceiver and is a 

divide-by-16 version of the data rate clock (195.3125 MHz).  The transceiver clock 

xcvr_clk is used to clock a multiplexer circuit to go from the x64 data width to the x16 

data width in the transmit direction, and a demultiplexer circuit to go from the x16 data 

width to the x64 data width in the receive direction. 

The BERT and ECC transmit block connects the BERT pattern generator to the 

MRL and ECC encoder and also performs multiplexing from x64 data width to x16 data 

width for connection to the transceiver.  This block also contains some logic to generate a 
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signal alternating between 0 and 1 to use as the pad bit.  The transmit block design is 

shown in Figure 32. 

 

Figure 32 - ECC and BERT transmit block diagram. 

The BERT and ECC receive block is a bit more complicated than the transmit 

block.  The incoming data must be demultiplexed and phase aligned with the divide-by-

64 block_clk, then decoded, and finally synchronized within the BERT receiver and have 

errors counted.  An ECC block synchronization must also be performed.  A block 

diagram of the BERT and ECC receive block is shown in Figure 33. 
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Figure 33 - BERT and ECC receive block diagram. 

For the first step in the receive data flow, the incoming receive data that is phase-

aligned to the recovered clock, xcvr_rx_clk, must be realigned to the divide-by-16 data 

rate clock, xcvr_clk, that is in phase with the slower divide-by-64 clock, block_clk, so 

that the demultiplexer circuit can function.  This realignment is accomplished through the 

use of an Altera megawizard FIFO block configured in x16 data width on both sides.  

The FIFO is set up so that two clock cycles after data begin to be written in, those data 

will be read out on every subsequent clock cycle.  The FIFO size is 8 words deep, and 

since the clock frequencies on both sides are equal the FIFO is guaranteed to never 

overflow or underflow.  The two clock cycle delay ensures that the location being read 

from is never the same as that being written to eliminating possible timing violations 
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between different time domains.  The output data from the FIFO is aligned with the 

xcvr_clk signal. 

Next the data is demultiplexed from 16 bits wide to 64 bits wide at the slower 

block_clk frequency.  The data demultiplexer block also contains a buffer that is two 64-

bit words deep, allowing for any possible alignment of the 8 bytes in the 64-bit word to 

be extracted.  When the receiver first starts receiving data, there is no guarantee that the 

alignment of the data coming out of the demultiplexer matches a transmitted ECC code 

word.  To accomplish this alignment, there is a state machine in the receive synchronizer 

block that monitors that error count and MRL error outputs from the ECC and MRL 

decoder to determine if alignment has occurred.  If there are errors, then the state 

machine causes the bit_slip_o output to be asserted which is sent to the transceiver and 

causes it to slip its bit alignment by one bit.  The bit alignment slip in the transceiver, 

however, wraps around on word boundaries, so that after 16 bit slips the bit alignment 

will be exactly as it was in the beginning.  To account for this, the bit_slip signal is also 

connected to the demultiplexer block where a counter causes the byte alignment to 

change by one after every 16 bit slips since if 16 bit slips occurred without 

synchronization being found, the byte alignment must be off.  The combination of the 

state machine and the demultiplexer will continuously cycle through all possible 

alignments until the right alignment is found and the decoded data are error free.  This 

receive synchronization method is a great advantage to a system that uses error correction 

coding and was somewhat of an unanticipated benefit of the coding.  This 

synchronization will be referred to as ECC block synchronization from here forward.  

The criteria for ECC block synchronization was set to the following: 
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• The ECC decoder error count had to be 0 or 1 for each of 8 consecutive words (it 

could not be 2 or 3); 

• There could be no MRL errors for 8 consecutive words. 

The state machine is shown in Figure 34.  Once ECC block synchronization occurs, the 

design assumes that it remains synchronized and will never try to resynchronize. 

BIT_SLIP

sync_count = 8 and 

receive_error = ‘1’

else

DETECT_ERR

ORS

reset

SYNC_FOU

ND

sync_count = 8 and 

receive_error = ‘0’

WAIT_FOR_

SLIP

sync_count = 255

else

IDLE

else

sync_en = ‘1’

 

Figure 34 - ECC block synchronization state machine. 

The last two parts of the path are the ECC and MRL decoder and the BERT 

receiver.  The design is set up such that the BERT receiver will not try to achieve data 

pattern synchronization until ECC block synchronization has occurred.  The receiver was 

set up with the data pattern synchronization criteria as no more than 1 bit error over 1024 



  108 

data words.  The BERT receiver was set up so that data pattern synchronization would be 

lost if more than 50 bit errors occurred over 1024 data words. 

One additional complication in the design that was encountered is that the BERT 

and ECC blocks were both designed to shift data serially most significant bit first.  The 

Altera Stratix GX transceiver shifts data serially least significant bit first and when 

multiple bytes are used they send data least significant byte first.  This does not really 

matter in the implementation that combines the ECC and BERT blocks since the ECC 

block synchronization guarantees alignment in the receiver.  However, in the uncoded 

design with only the BERT blocks, there is a possibility with certain bit and byte 

alignments that the receiver will not synchronize to the data pattern because adjacent bits 

do not always end up next to each other coming out on the receive side.  To fix this, the 

transmit data going to the transceiver and the receive data coming from the transceiver 

was bit reversed so that the bits were transmitted most significant bit first.  There were 

many design challenges faced in getting receive data from the transceiver in the correct 

alignment. 

5.2 Stratix GX Development Board Indicators and Settings 

The test and control logic shown in Figure 31 uses some dip switches on the 

Stratix GX development board to control how the testing is conducted.  For test setup the 

switches control the test duration or the number of data words on which the BERT 

receiver will measure bit error rate and the data pattern to be used in the test.  The design 

was set up to use two different programmable data words in addition to the two PRBS 

patterns.  The first was an alternating 10 pattern and the second was a 0xABCD repeating 

word.  This section describes the meaning and use of some of the indicators and switches 
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used on the Stratix GX development board within the design.  A summary of the switch 

inputs is shown in Table 10.  A summary of the LED and numeric display meanings is 

shown in Table 11. 

Table 10 - Stratix GX development board dip switch settings for integration design. 

Switch 

Reference 

Designator 

Switch # 
Switch Net Name in 

Design 
Settings 

0 
gx_dip0_i 

1 
gx_dip1_i 

SW1 SW0 Bit-Error-Rate-Tester Pattern 

  0   0 Programmable word 

  0   1 2
11

-1 PRBS pattern 

  1   0 2
31

-1 PRBS pattern 

  1   1 Disable pattern generator 

2 

gx_dip2_i Set programmable word type. 

0 = set to an alternating pattern of 1s and 0s 

1 = set to preprogrammed data word 

3 
gx_dip3_i 

4 
gx_dip4_i 

SW4 SW3 Test duration 

0 0 Short (half a minute) 

0 1 Medium (15 minutes) 

1 0 Long (several hours) 

1 1 Very Long (several days) 

5 

gx_dip5_i Selects the MSB or LSB of the err_cnt to be 

displayed. 

0 = LSB 

1 = MSB 

6 

gx_dip6_i Selects the source for display_cnt<7:0>, the 

counter value to be displayed on the LED display. 

0 = err_cnt (see gx_dip5_i for which bits are 

selected) 

1 = bit_slip_cnt<7:0> 

S11 

7 gx_dip7_i Not used 
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Table 11 - Stratix GX development board status indicators for integration design. 

Indicator 

Reference 

Designator 

Indicator 

Description 

Output Net 

Name in 

Design 

Status Net Name in 

Design Status Indicated 

D10 LED 0 gx_led0_o sync_detect 

Indicates whether the receiver 

has achieved ECC block 

synchronization.  (On = 

synchronized) 

D11 LED 1 gx_led1_o sync_loss_status_latch 

Indicates whether the BERT 

receiver has ever lost data pattern 

synchronization (On = 

synchronization has been lost) 

D12 LED 2 gx_led2_o err_ovrflw_latch 

Indicates whether the error 

counter has ever overflowed (On 

= overflow has occurred) 

D13 LED 3 gx_led3_o heartbeat_led  

D14 LED 4 gx_led4_o sync_status_latch 

Indicates whether the BERT 

receiver has ever achieved data 

pattern synchronized (On = 

synchronization has occurred) 

D15 LED 5 gx_led5_o disp_ovrflw_latch 

Indicates whether the MRL 

encoder block has ever indicated 

that it had a running disparity 

overflow (On = running disparity 

overflow occurred) 

gx_dig_1a_o 

gx_dig_1b_o 

gx_dig_1c_o 

gx_dig_1d_o 

gx_dig_1e_o 

gx_dig_1f_o 

7 Segment 

display first 

digit 

gx_dig_1g_o 

display_cnt(7:4) 

or display_cnt(15:12) 

Most significant nibble of bit-

error-rate-tester error count or 

count of the number of bit slips in 

hex  

7 Segment 

display first 

period 

gx_dig_1dp_o sync_status 

Bit-error-rate-test receiver 

synchronization status 

(On = synchronized) 

gx_dig_2a_o 

gx_dig_2b_o 

gx_dig_2c_o 

gx_dig_2d_o 

gx_dig_2e_o 

gx_dig_2f_o 

7 Segment 

display second 

digit 

gx_dig_2g_o 

display_cnt(3:0)  

or  

display_cnt(11:8) 

Least significant nibble of bit 

error rate tester error count or 

count of the number of bit slips in 

hex 

D9 

7 Segment 

display second 

period 

gx_dig_2dp_o test_done 

Indicates whether the BERT test 

has reached the maximum word 

count and is done.   

(On = test done) 
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5.3 Test Results 

Testing was performed using the Altera Stratix GX development board with the 

design described in section 5.1.  Two versions of this design were created, one exactly as 

described and another containing only the BERT pattern generator and receiver and not 

the coding blocks.  The reference clock frequency on the development board and the PLL 

multipliers available in the Stratix GX device allowed for transmission rates of 2.5 Gbps 

and 3.125 Gbps.  The testing was performed using 3.125 Gbps as a coded-data bit rate for 

the coded data and 2.5 Gbps for the uncoded data.  The ratio of these two rates represents 

a reasonable approximation of the code rate of the ECC used in this project (actual code 

rate is 0.75 while this ratio is 0.8).  Therefore, on both cases the rate of transfer of input 

data is approximately the same (2.34375 Gbps versus 2.5 Gbps).  It would be better to 

compare coded to uncoded transfers with transmission rates having the 0.75 ratio, and 

therefore both transferring input data at the same rate, but that was not easily 

accomplished in the test setup. 

Testing was performed using four different data patterns for both the coded and 

uncoded designs.  Those data patterns were a 16-bit repeating word pattern of 0xABCD, 

an alternating 1010 pattern, the 2
11

 – 1 PRBS pattern, and the 2
31

 – 1 PRBS pattern.  A 

backplane loopback card was plugged into the Stratix GX development board as the 

transmission channel, with a single transceiver transmitting, so there was minimal 

crosstalk present during the testing.  Two different backplane loopback cards were used, 

one with 10 in. of trace length and the other with 40 in. of trace length, and bandwidth 

plots for these were shown in Figure 7 in section 3.1.1.  The optimum output voltage 

setting for the transceiver was determined to be 1 V peak-to-peak differential for the loss 
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in the 40 in. backplane channel and this setting was used for both the 10 in. and the 40 in. 

backplane tests.  Originally the transceiver was set up for no channel equalization, but 

some experimentation with the equalization settings was done. 

A couple of different test durations were used in the BER testing.  The first will 

be referred to as the short test and was set to test 6.87 * 10
10

 information bits for the 

uncoded data (test duration of about 0.46 minutes) and 6.44 * 10
10

 information bits for 

the coded data (test duration of about 0.46 minutes).  This test would be expected to 

count over 60 bit errors for bit error rates around 10
-9

, providing a good statistical 

confidence at this bit error rate.  The second duration will be referred to as the long test 

and was set to test 5.28 * 10
13

 bits for the uncoded data (test duration of 5.87 hours) and 

5.28 * 10
13

 bits for the coded data (test duration of 6.26 hours).  This test would be 

expected to result in over 50 bit errors for bit error rates around 10
-12

, providing a good 

statistical confidence at this bit error rate.  If the long test completed error free, there is 

95% confidence that the bit error rate is below 5.68 * 10
-14

. 

In addition to BER measurements, some signal quality measurements were also 

made using a Lecroy SDA6020 Serial Data Analyzer.  This is a 6 GHz real-time 

oscilloscope with some software applications for measuring jitter and bathtub curves.  

The scope stores 32 M samples per channel and can sample at 20 GS/s.  A solder-in 

probe with a bandwidth of 7 GHz was used for the measurements (part number D600ST-

S1).  The following sections describe some actual test results based on the above test 

setups and test equipment. 
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5.3.1 BER for 10 in. Backplane Channel Uncoded Data 

Testing was performed with uncoded data being transferred at 2.5 Gbps through 

the 10 in. backplane.  Multiple short tests were performed with each data pattern.  Data 

pattern synchronization always occurred, and there were never any bit errors.  A long test 

was performed using the 2
11

 – 1 PRBS pattern, and there were no errors, meaning that the 

bit error rate was below 5.86 * 10
-14

 with a 95% confidence.  An eye diagram was 

measured for for the 2
11

 – 1 PRBS pattern and is shown in Figure 35. 

 

Figure 35 - Uncoded data eye diagram, 2.5 Gbps, 2
11

 - 1 PRBS pattern, 10 in. backplane 

(oscilloscope screen capture). 
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5.3.2 BER for 10 in. Backplane Channel Coded Data 

Testing was performed with coded data being transferred at 3.125 Gbps (or an 

information rate of 2.34375 Gbps) through the 10 in. backplane.  ECC block 

synchronization and data pattern synchronization occurred for all four data patterns tested 

and there were never any bit errors measured in the short test duration.  Multiple tests 

were performed with each pattern.  A long test was performed using the 2
11

 – 1 PRBS 

pattern, and there were no errors, meaning that the bit error rate was below 5.86 * 10
-14

 

with a 95% confidence.  An eye diagram was measured for the 2
11

 – 1 PRBS pattern and 

is shown in Figure 36. 

 

Figure 36 - Coded data eye diagram, 3.125 Gbps, 2
11

 - 1 PRBS pattern, 10 in. backplane 

(oscilloscope screen capture). 
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5.3.3 BER for 40 in. Backplane Channel Uncoded Data 

Testing was performed with uncoded data being transferred at 2.5 Gbps through 

the 40 in. backplane.  Multiple short tests were performed with each data pattern, and 

data pattern synchronization always occurred.  For the alternating 1010 pattern and the 

repeating data word 0xABCD pattern, there were never any bit errors.  For the 2
31

 – 1 

PRBS pattern the error counter overflowed and the BERT receiver lost synchronization 

throughout the test.  The bit error rate for this pattern had to be better than 1.53 * 10
-5

 but 

it was much larger than the target bit error rate for the short test measurement, equal to 

10
-9

.   The behavior for the 2
31

 – 1 PRBS pattern was very consistent; however, the 

behavior for the 2
11

 – 1 PRBS pattern was not.  For the latter pattern, synchronization 

always occurred and was never lost during a test, but the bit error rate varied from test to 

test.  The variance can be classified into three categories: a low bit error rate in which 

only 1 to 5 errors were counted, a medium bit error rate when many errors were counted, 

and a very high bit error rate where the error counter overflowed many times.  The range 

of errors measured that can be classified as medium varied a lot as well.  The lowest 

recorded error count was 609 and the highest was 88029 corresponding to error rates of 

8.86 * 10
-9

 and 1.28 * 10
-6

 respectively.  To rule out differences in the signal quality from 

test to test being the cause of the bit error rate difference, eye diagram measurements 

were made for the cases where medium bit error rate was observed and low bit error rate 

was observed.  The eye diagrams were basically identical. A reasonable explanation for 

the variation is that the transceiver is synchronizing onto the data and centering its sample 

point at a different location from test to test.  Depending on the location of the sample 

point, the error rate would vary.  It’s not entirely clear why there seems to be three 
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distinct error count classifications and not a more continuous distribution of error counts.  

Everything points to something inside the transceiver as being the cause of this since (a) 

nothing like this ever occurs on the 10 in. backplane channel, indicating that the logic is 

not the cause, and (b) the signal quality is the same, so the channel is not the cause.  An 

eye diagram was measured for for the 2
11

 – 1 PRBS pattern and is shown in Figure 37.  

This eye diagram clearly illustrates why there are bit errors, since it is nearly closed. 

 

Figure 37 - Uncoded data eye diagram, 2.5 Gbps, 2
11

 - 1 PRBS pattern, 40 in. backplane 

(oscilloscope screen capture). 
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5.3.4 BER for 40 in. Backplane Channel Coded Data 

Testing was performed with coded data being transferred at 3.125 Gbps (or an 

information rate of 2.34375 Gbps) through the 40 in. backplane.  For the alternating 1010 

data pattern, ECC block synchronization occurs within the first pass, data pattern 

synchronization occurs and there were never any bit errors measured over multiple short 

tests.  For the repeating 0xABCD data word pattern, ECC synchronization never 

occurred, so no error count or data pattern synchronization was determined.  For the 2
11

 – 

1 PRBS pattern, ECC block synchronization always occurred but never on the first pass.  

Data pattern synchronization never occurred for this pattern so no bit error count was 

available.  The results for the 2
31

 – 1 PRBS pattern were exactly the same as for the 2
11

 – 

1 PRBS pattern; ECC block synchronization occurred after multiple passes but data 

pattern synchronization never occurred.  Clearly, the increased transmission rate required 

to send the code bits makes the bit error rate worse than without coding for the 40 in. 

backplane channel.  An eye diagram was measured for the 2
11

 – 1 PRBS pattern and is 

shown in Figure 38.  This eye diagram clearly illustrates why data pattern 

synchronization wasn’t possible, since it is completely closed. 

Since it was clear that there was no coding gain at the code rate of the ECC design 

in this project for the 40 in. backplane channel, an interesting question is, would there be 

a coding gain at any code rate?  To test this, the coded design was changed to operate at a 

transmitted rate of 2.5 Gbps, the same transmitted rate as was used with the uncoded 

system.  The coded design now has an information rate of 1.875 Gbps.  Multiple tests 

were conducted with each data pattern in this setup.  ECC block synchronization always 

occurred on the first pass and data pattern synchronization also always occurred.  There 
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were never any bit errors for the alternating 1010 pattern, the repeating 0xABCD word 

pattern, and the 2
11

 – 1 PRBS pattern for the short test.  For the 2
31

 – 1 PRBS pattern 

there was a varying bit error count from 649 to 21551, corresponding to bit error rates 

from 1.01 * 10
-8

 to 3.34 * 10
-7

, respectively.  This performance is clearly an improvement 

over that of the uncoded data at 2.5 Gbps through the 40 in. backplane.  The implication 

is that a code having a code rate higher than that of the tested code (i.e., 0.75), but having 

similar error correction capabilities and similar MRL characteristics, if it exists, may be 

effective for the 40 in. backplane channel. 

 

 

Figure 38 - Coded data eye diagram, 3.125 Gbps, 2
11

 - 1 PRBS pattern, 40 in. backplane 

(oscilloscope screen capture). 
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It is also interesting to note that over 25 short tests were performed using the 2
11

 -

1 PRBS pattern and there were never any bit errors detected.  This is interesting because 

at the same transmitted rate of 2.5 Gbps, the uncoded data had the three modes of 

operation, low, medium, and high bit error rate.  It seemed reasonable to expect that with 

this coded system the high bit error rate mode would present itself at least occasionally 

and result in some bit errors at 2.5 Gbps.  The 2
31

 -1 PRBS pattern with the coding also 

did not exhibit the different modes of operation, all the measurements could be classified 

as medium bit error rates. 

5.3.5 Equalization with Coded and Uncoded Data in the 40 in. Backplane 

Some additional testing was done on the 40 in. backplane channel with the 2.5 

Gbps uncoded data and the 3.125 Gbps coded data.  The receiver within the transceiver 

has an equalizer built in that can be set to a range of equalization levels from 0 (off) to 4 

(maximum equalization).  Experimentation revealed that a setting of 2 for the coded data 

at 3.125 Gbps was sufficient to make the errors go away.  In multiple tests with each of 

the 4 data patterns for the coded data at 3.125 Gbps, ECC block synchronization always 

occurred, data pattern synchronization always occurred, and there were never any bit 

errors.  A long test was also performed with the 2
11

 – 1 PRBS pattern and it completed 

error free indicating a 95% confidence that the bit error rate is better than 5.86 * 10
-14

.  

The same equalization setting of 2 was used on the 2.5 Gbps uncoded data with the 40 in. 

backplane with exactly the same results; data pattern synchronization always occurred, 

there were never any bit errors on the short test, and the long test with the 2
11

 – 1 PRBS 
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pattern completed error free.  It is not clear from the results of this test if the bit error rate 

was improved with the use of coding and equalization. 

5.3.6 BER Bathtub Curves and Coding Gain for 10 in. Backplane Channel 

The bathtub curve model of bit error rate versus sample position described in 

section 3.4.4 can be used to evaluate the improvement due to the addition of error-

correction coding, for an ECC design.  This is being referred to as an improvement due to 

the addition of error-correction coding, instead of a coding gain, because it is being 

determined for a system for which coding is added without increasing the transmission 

rate in the channel.  In such a case the rate at which input data is transferred will be 

reduced.  For the situation where the coded system has a transmission rate in the channel 

that is increased to keep the transfer rate of input data at a constant, an analyzed 

improvement is referred to as a coding gain.  The improvement due to the addition of 

error-correction coding can still be a useful measure to evaluate whether a given code rate 

code will be effective if the change in jitter from one transmission rate to another can be 

estimated.  The uncoded bit error rate can be converted into a coded bit error rate using    

( 36 ) [35], where 
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In ( 36 ) n is the code word size (63 bits for the ECC design in this project), t is the 

number of bit errors that can be corrected per code word (2 for the ECC design in this 

project), and p is the transition probability of a binary symmetric channel (BSC) or the 

uncoded probability of a bit error.  Equation ( 36 ) was derived from an upper bound on 
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code word error probability [35], and assumes that for every code word error that occurs, 

all 48 data bits in the code word will be in error.  This assumption is overly pessimistic 

and therefore weakens the upper bound on the amount of improvement due to the 

addition of ECC.  In this design, where an ECC code is used with an MRL code, if 

uncorrected bit errors occur in the MRL code bit positions, the MRL decoder could 

incorrectly invert or not invert the data bits causing most of the bits to then be in error.  A 

better upper bound could be placed on the improvement due to the addition of the ECC in 

this design by calculating the likelihood that a code word error would result in errors in 

the MRL bit positions and using that to determine the average number of bit errors per 

code word error.  Equation ( 36 ) could then be modified by including an additional factor 

equal to the average fraction of data bits in error in each code word that has errors.  

Another equation giving an approximation of the improvement in bit error rate due to the 

addition of an ECC is shown in ( 37 ) [22], where 
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 Equation ( 37 ) does not assume any increase in bit errors by subsequent MRL 

decoding after the ECC decoder, so it is a bit optimistic in estimating the improvement in 

bit error rate due to the addition of an ECC.  Equation ( 36 ) has been used for analysis in 

this project, but a comparison was made between ( 36 ) and ( 37 ) to show how much 

difference there is.  The true improvement in bit error rate due to the addition of the ECC 

in this design is expected to be between these two. 

Using ( 36 ) with the XAUI bathtub curve shown in Figure 15 in section 3.4.4 and 

the ECC design in this project results in a plot of the bit error rate versus receiver sample 
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time for a system with the addition of coding.  Plots of the XAUI bathtub curve (that is, 

the bathtub curve derived from the XAUI standard) and the XAUI bathtub curve with an 

improvement due to the addition of ECC, based on ( 36 ), are shown in Figure 39. 
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Figure 39 - Coding gain bathtub curves for system with XAUI jitter parameters. 

The improvement due to the addition of coding, shown in Figure 39, at a bit error rate of 

10
-12

, is about 0.0335 UI of jitter per side of the bathtub or a total of 0.0671 UI of jitter.  

For a system operating at the same bit error rate of 10
-12

 but with all random jitter and no 

deterministic jitter (random jitter of 0.0464 UI rms) the improvement due to the addition 

of coding is 0.119 UI of jitter per side of the bathtub or a total of 0.237 UI of jitter.  So 

the actual theoretical improvement due to the addition of coding for this system should be 

somewhere in the range between 0.0671 UI and 0.237 UI of jitter depending on the 

characteristics of the jitter in the system.  The improvement due to the addition of coding 

using ( 37 ) was analyzed for comparison purposes and was found to be 0.0731 for the 

XAUI jitter case, and 0.258 for the all random jitter case.  Equation ( 37 ) is more 

optimistic than ( 36 ) by 0.006 UI for the XAUI jitter case and 0.021 UI for the all 
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random jitter case.  It is interesting to note that the code is more effective on systems with 

random noise than systems with both random and deterministic noise. 

This bathtub curve methodology was used to evaluate the effectiveness of the 

coding in the 10 in. backplane system since the BER measurement results were not 

conclusive.  The Lecroy SDA6020 was used to measure the bathtub curve for the 

transmitted data at 3.125 Gbps (the rate used in the channel with coding) and for the 

transmitted data at 2.5 Gbps (the rate used in the uncoded channel), in both cases using 

the 2
11

 – 1 PRBS data pattern.  The scope results are best when many repeats of a pattern 

can be captured in the sample memory for analysis and this is not possible with the longer 

2
31

 – 1 PRBS pattern.  Equation ( 36 ) was then applied to the 3.125 Gbps bathtub curve 

to obtain a bathtub curve applicable to the information or input data for the system with 

ECC, and the three curves were compared, as shown in Figure 40. 

Based on Figure 40, the improvement due to the addition of ECC at a channel 

transmission rate of 3.125 Gbps and at a bit error rate of 10
-12

 is 0.096 UI on the left side 

and 0.072 UI on the right side for a total improvement of 0.168 UI.  This is just about in 

the middle of the theoretical range of improvements between 0.0671 UI and 0.237 UI.  

Also, based on Figure 40, the coding gain between the coded data at a transmission rate 

of 3.125 Gbps (or an information rate of 2.34375 Gbps) and the uncoded data at 2.5 Gbps 

is 0.035 UI on the left side and 0.037 UI on the right side for a total coding gain of 0.072 

UI.  This indicates that for the 10 in. channel, the error correction coding is likely to be 

effective at lowering the bit error rate.  The channel is already operating well below the 

target bit error rate of 10
-12

 without the coding however. 
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Figure 40 - Coding gain for 10 in. backplane channel. 



  125 

6 Conclusions and Future Work 

An ECC block and a BERT block have been successfully designed, implemented 

and tested.  The ECC block has a code rate of 0.75, meets the MRL requirements of the 

transceivers and transmission channel, and has a decoding latency of 4 parallel clock 

cycles or 81.92 ns at 3.125 Gbps.  The implemented logic was able to function with a 

data rate up to 4.34 Gbps, well beyond the capabilities of the transceivers in the Altera 

Stratix GX.  An unexpected benefit of the error correction code was the ease with which 

ECC block synchronization could be achieved by simply moving the bit alignment until 

the ECC decode block indicated that there were no errors.  This algorithm is no more 

complicated than the synchronization algorithms currently used in 8B/10B coding.  The 

chosen ECC code is a BCH code that can be implemented with reasonable complexity, 

and has acceptable decoding latency for applications with multi-gigabit data rates.  The 

BERT block supports three data patterns and is easily configurable and reusable.  The 

performance of the BERT block is sufficient to support 3.125 Gbps data rates in the 

Altera Stratix GX device. 

The coding gain of the ECC block was not sufficient for a 40 in. backplane 

channel dominated by intersymbol interference.  Some additional analysis with a high 

speed oscilloscope showed that the ECC design was effective on a 10 in. backplane 

channel.  At data rates below 3.125 Gbps, it is not clear if the ECC design would be 

useful for any real channels.  A 10 in. channel does not require error correction to achieve 

low enough bit error rates.  It is clear that a higher code rate is needed for coding to be 

effective for a 40 in. backplane channel.  Determining what code rate is necessary could 

be done on the current test setup by using a function generator to provide a reference 
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clock to the Altera Stratix GX device.  By adjusting the frequency of the reference clock, 

different data rates could be quickly tried to determine the transmitted data rate at which 

the current ECC design becomes ineffective, between 2.5 Gbps and 3.125 Gbps.  Then 

2.5 Gbps, divided by this data rate would be a plausible code rate to further investigate.  

A new ECC could be designed with the higher code rate and evaluated.  Another area for 

investigation would be different backplane channel lengths between 10 and 40 in. to 

determine the maximum channel length for which the coding is effective.  Perhaps this 

investigation would also reveal the coding to be more useful for some backplane channel 

lengths, than it is for the 10 in. backplane. 

The strange behavior of the system at 2.5 Gbps without coding in the 40 in. 

backplane for the 2
11

 – 1 PRBS pattern is something that could use further investigation.  

The three different modes of bit error rate performance of low, medium, and high were 

not seen during the coded data transmission at the same transmission rate.  An ECC 

corrected error counter could be added to the design to count the number of bit errors that 

have been corrected.  This could give some insight into whether the bit errors are still 

present but are being corrected, or if for some reason due to the data coding alone (MRL 

coding or additional transitions due to the parity bits) the performance is improved.   

The analysis and results indicated that the ECC design is most effective for 

channels with random noise and is less effective for deterministic noise.  As data rates 

continue to increase, random noise in the form of random jitter will become a larger part 

of the timing budget.  Channel equalization will probably continue to be the first option 

to combat intersymbol interference, but error correction coding such as that used in this 

design is also potentially very useful in achieving the target bit error rates. 
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One thing that was discovered in the project testing was that there is a very strong 

relationship between data pattern and bit error rate.  The longer patterns in most cases 

seemed to have higher bit error rates.  This is definitely an area for more investigation.  It 

indicates that when an error correction code is designed for serial digital multi-gigabit 

communication systems, the type of data must be taken into account when the code is 

designed.  A specific area of investigation that relates to the pattern length is the MRL 

coding part of the design.  The performance of the MRL code design should be more 

thoroughly characterized and possibly improved. 

The goal of learning about digital communication systems and how they apply to 

serial digital multi-gigabit communication has been achieved.  The communication 

channel and transceivers have been characterized to determine the factors that are 

important in code design.  Also, the relationship between bit error rate and jitter has been 

investigated and applied in the project.  Some effort has also been spent determining 

statistical methods to measure bit error rates.  A lot of knowledge about error correction 

codes was also gained by implementing the BCH code, including knowledge about 

Galois fields, generator polynomials, and error search algorithms. 

Another goal of the project was to become familiar with the Altera Stratix GX 

transceivers.  Many obstacles were encountered throughout the implementation phase of 

the project in working with the transceivers.  The most difficult aspects of working with 

serial data were in making the transformation from serial to wider parallel clock domains 

and maintaining the proper bit and byte ordering on the receive side.  There were several 

bugs in the logic design that had to be uncovered that related to this, and some were due 

to misunderstandings about how the Altera Stratix GX transceiver operated.  The best 
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example is how the bit slipping operation works within the transceiver.  It is actually not 

a true bit slipping function, but it wraps around on word boundaries. 

There are several other areas where some additional investigation could be 

performed as future projects.  One is to evaluate the effects of crosstalk on the bit error 

rate and see how effective the code design is at dealing with this type of noise.  The test 

setup in this project would be a good starting point since there are four transceivers in the 

Stratix GX device that connect to the backplane connector.  Three aggressor channels 

could be turned on transmitting BERT data to determine the effects.  Another area for 

investigation would be a more detailed comparison of the performance of the coding 

design in this project with the 8B/10B coding commonly used in serial standards with 

multi-gigabit data rates.  Some additional work can be done in comparing the error 

correction capabilities of the code design in this project to the CRC codes commonly 

used in the serial standards.  Enhancements to the code design may be possible that 

incorporate some additional error detection capabilities to eliminate the need for using 

CRC codes in conjunction with this coding scheme.  Finally, some investigation into how 

a block code such as that designed in this project can fit into a higher layer protocol 

would be useful. 
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9 Appendix A – ECC Block Datasheet 

 

 

 

Serial Digital Multi Gigabit 

Communications Block Code – (51,48) 

MRL and (63,51) BCH 

 

Document Number: 9132.011 

EC/Revision: Rev 1.0 

Revision Date: March 7, 2005 

Author: David Carney 

 

 

Features: 

• Two error correcting capability 

• Some three or more error 

detecting capability 

• 48 bit logic side data interface 

• 16 bit transceiver side data 

interface 

• Run length limited to 64 bits 

• Provides a mechanism for DC 

balanced data (no guarantee) 

• more features 

 

 

Description: 

The core consists of two separate blocks, the encoder and the 

decoder.  The encoder performs a maximum run length 

limiting on the data followed by parity generation using a 

(63,51) BCH code.  The decoder performs the inverse 

operation of this.  The core is written in VHDL. 

 

Required VHDL Files: 

mrl_bch_encoder_64_48.vhd 

 mrl_51_48_encoder.vhd 

 bch_63_51_encoder.vhd 

bch_mrl_decoder_64_48.vhd 

 bch_63_51_syndrome.vhd 

 bch_63_61_error_poly.vhd 

  gf_2_6_mult.vhd 

  gf_2_6_inverter.vhd 

 bch_63_51_error_search.vhd 

 mrl_51_48_decoder.vhd 

 

 

Required Libraries: 

ieee.std_logic_arith.all 

ieee.std_logic_unsigned.all 

ieee.std_logic_signed.all 

ieee.std_logic_1164.all 

gf_2_6_field_pkg.all (gf_2_6_field_pkg.vhd) 
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Encoder Description 

 

Encoder Functional Diagram: 

 
  

 

Encoder Timing: 

Block Parameters Chip Speed 

Grade 

Package Area Speed 

(MHz) 

DISPARITY_REG_SI

ZE = 9 

Altera Stratix GX 

(EP1SGX25FF1020) 

-5 1020 pin 

BGA 

450 LCs 

181 LC 

Registers 

67.79 
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Encoder Parameters: 

Generic Default 

Value 

Description 

DISPARITY_REG_SIZE 9 Number of bits that the signed running disparity register 

contains. 

  

 

Encoder Input/Output Descriptions: 

Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

block_clk_i std_logic NA NA I Clock used by the block.  A new 48 bit 

data input symbol is valid on every 

rising edge of this clock.  The encoded 

data rate of the block is 64x this clock. 

reset_n_i std_logic NA NA I Reset signal for the core (0=reset state, 

1=out of reset).  This input is 

asynchronous. 

data_in_i std_logic_vector 47 0 I Contains the data input symbol.  It is 

synchronous to and valid on the rising 

edge of the block_clk_i.  This comes 

from the internal core logic source of the 

data. 

pad_bit_i std_logic NA NA I Contains a pad bit that is added to the 

coded bit in data_out_o position 63 for 

every block output from the encoder.  

This input must be synchronous to and 

valid on the rising edge of block_clk_i.  

The output will be delayed will be 

delayed by three clock cycles so that it 

matches with the same data_in_i word 

that it was input with. 

data_out_o std_logic_vector 63 0 O Contains the data output symbol. It is 

synchronous to and output on the 

block_clk_i.  This goes to the transceiver 

transmit block. 

disparity_over

flow_o 

std_logic NA NA O A flag to indicate if a running disparity 

counter overflow has occurred.  This 

output is synchronous to and output on 

the rising edge of block_clk_i. 

 

 

 

 

 

 

 

 

 

 



  137 

 

Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

enable_i std_logic NA NA I Causes the encoder to be enabled or 

disabled (1=enabled, 0=disabled). This 

input is synchronous to and valid on the 

risinge edge of block_clk_i.  In the 

disabled state the block will be 

completely inactive and output data will 

not change. 

When enable_i transitions from 0 to 1 

the block immediately begins processing 

and outputting data. 

clr_run_dispar

ity_i 

std_logic NA NA I Causes the MRL encoder to clear the 

running disparity register to 0.  This 

input is synchronous to and valid on the 

rising edge of block_clk_i.  If this signal 

is a 1, the running disparity register will 

be set to 0 on the next block_clk_i cycle. 

 

 

 

Encoder Input Truth Table: 

n_reset_i enable_i Clr_run_di

sparity_i 

Core State 

0 X X The encoder is in reset, data_out_o is all zeros.  The 

running disparity counter is reset and all internal data 

pipeline registers are set to zeros. 

1 0 0 Disabled – Core disabled meaning no data is latched in 

from data_in_i but all other internal registers retain their 

state and the output data remains in the last valid state.  

1 1 0 Enabled – data_out_o will be the encoded version of 

data_in_i. 

1 X 1 The current enabled or disabled state applies to all registers 

except the running disparity register which will be cleared 

to 0 on the next clock cycle. 
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Decoder Description 

 

Decoder Functional Diagram: 
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Decoder Timing: 

Block 

Parameters 

Chip Speed 

Grade 

Package Area Speed 

(MHz) 

NA Altera Stratix GX 

(EP1SGX25FF1020) 

-5 1020 pin 

BGA 

989 LCs 

306 LC Registers 

105.33 

 

 

 

 

 

Decoder Input/Output Descriptions: 

Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

block_clk_i std_logic NA NA I Clock used by the block.  A new 48 bit 

data output symbol is valid on every 

rising edge of this clock.  The decoded 

data rate of the block is 64x this clock. 

reset_n_i std_logic NA NA I Reset signal for the core (0=reset state, 

1=out of reset).  This input is 

asynchronous. 

data_in_i std_logic_vector 63 0 I Contains the input data symbol from the 

transceiver.  It is synchronous to and 

valid on the rising edge of xcvr_clk_i.  

The data block to be decoded consists of 

four consecutive data_in_i symbols. 

data_out_o std_logic_vector 47 0 O Contains the data output symbol. This 

goes to the internal core logic.  This 

signal is clocked out on the rising edge 

of block_clk_i. 

enable_i std_logic NA NA I Causes the decoder to be enabled or 

disabled (1=enabled, 0=disabled). This 

input is synchronous to and valid on the 

risinge edge of block_clk_i.  In the 

disabled state the block will be 

completely inactive and output data will 

not change. 

When enable_i transitions from 0 to 1 

the block immediately begins processing 

and outputting data. 

pad_bit_o std_logic NA NA O Contains the pad bit stripped off of the 

input data word before decoding.  The 

output is delayed so that it matches up 

with the same clock cycle that the 

corresponding decoded data is output on. 

This signal is output on the rising edge 

of block_clk_i. 
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Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

error_cnt_o std_logic_vector 1 0 O Contains a count of the number of errors 

the decoder detected / corrected as 

ollows: 

00 – No errors detected 

01 – 1 Error detected and corrected 

10 – 2 Errors detected and corrected 

11 – 3 or more errors detected 

This signal is output on the rising edge 

of block_clk_i. 

mrl_error_o std_logic NA NA O Contains an indication of whether or not 

the MRL decoder detected an error 

pattern in the MRL bits.  (1=error, 0=no 

error).  This signal is output on the rising 

edge of block_clk_i. 

 

 

 

 

Decoder Input Truth Table: 

n_reset_in enable_in Core State 

0 X The decoder is in reset, data_out_o is all zeros.  All 

internal data pipeline registers are set to zeros. 

1 0 Disabled – Core disabled meaning no data is latched in 

from data_in_i but all other internal registers retain their 

state and the output data remains in the last valid state.  

1 1 Enabled – data_out_o will be the decoded version of 

data_in_i. 
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Background 

For detailed background information on the use of ECC in serial digital multi gigabit communication 

systems, refer to section 3.6. 

Functional Description 

The design consists of an error correct coding scheme coupled with a maximum run length limiting 

scheme.  There are two blocks, the encoder and the decoder.  The data word size is 48 bits and there are 15 

code bits and 1 pad bit for a total coded word size of 64 bits.  The code rate is 0.75.  The error correction 

coding is a 2 error correcting primitive BCH code with a minimum distance of 5.  It can detect and correct 

all 1 and 2 bit error patterns in the 63 code bits (the pad bit is not protected).  It can also detect some 3 or 

more bit error patterns.  The code will actually detect 99.976% of all error patterns, however since the 

minimum distance is 5 and error correction is used, many error patterns beyond 2 bits will actually result in 

the code making an invalid correction.  The intended application for this error correction coding scheme is 

in wired serial digital multi-gigabit communication systems where the distribution or errors is random.  

Encoding Data Flow 

Data comes in to the encoder in 48 bit words synchronous to and valid on the rising edge of block_clk_i.  

There are two steps to the encoder, MRL encoding and BCH encoding.  The operation of these blocks 

occurs normally unless they are held in reset or they are disabled.  Each block completes in 1 block_clk_i 

clock cycle, so the encoder takes 2 block_clk_i clock cycles to encode data.  After the initial 2 clock 

latency, data is continuously coming out of the encoder. 

 (51,48) MRL Encoder 

After the first clock cycle the data will be encoded with the MRL block and three code bits will be 

added to the data and the data will either be inverted or not inverted to minimize the running 

disparity of 1s and 0s.  The rules for the encoding are as follows.  The MRL bits are labeled as 

MRL<2:0>. 

• If the running disparity is greater than or equal to 0 

o If the disparity of the current 48 bit input data word is greater than or equal to 0, 

then invert the data bits and set MRL<0,2> to 0 

o Else leave the 48 bit input data word alone and set MRL<0,2> to 1 

• Else if the running disparity is less than 0 

o If the disparity of the current 48 bit input data word is greater than or equal to 0, 

then leave the data bits alone and set MRL<0,2> to 1 

o Else invert the data bits and set MRL<0,2> to 0 

• Set MRL<1> to the inverse of MRL<2> 

 

A running disparity register is maintained in the MRL block that is updated on every clock cycle.  

A positive disparity indicates that more 1s than 0s have occurred and a negative disparity indicates 

that more 0s than 1s have occurred.  The running disparity is based on both the MRL coded data 

and on the disparity of the BCH parity bits that have been added to the transmitted data after this 

block.  The disparity of the BCH parity bits is fed back to this block. 
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• At reset Running Disparity is set to 0 

• If the data has not been inverted 

o Current Disparity = (1s Count of Input Data) – (48 – (1s Count of Input Data)) 

o Running Disparity = (Running Disparity) + (Current Disparity) + 1 + (ECC 

Disparity) 

• If the data has been inverted 

o Current Disparity = (48 – (1s Count of Input Data)) – (1s count of Input Data) 

o Running Disparity = (Running Disparity) + (Current Disparity) -1 + (ECC 

Disparity) 

• If the Running Disparity has overflowed the size of its register in the positive direction, 

then set it to the maximum register size and set the disparity_overflow_o output bit to 1. 

• Else if the Running Disparity has overflowed the size of its register in the negative 

direction, then set it to the minimum register size and set the disparity_overflow_o output 

bit to 1. 

• Else set the disparity_overflow_o output bit to 0. 

This MRL code provides a mechanism to limit the maximum run length of the output data to no 

more than the encoded block size of 64 bits.  It also provides a mechanism for controlling the 

amount of disparity between 0s and 1s in transmitted data to limit the DC spectra content of the 

data.  There is no guaranteed limit on the running disparity though since the code adds an extra 

transition bit and downstream the BCH coder adds 12 more unconstrained bits.  The running 

disparity register in the block is bounded to 8 bits in magnitude in either the positive or negative 

direction so if the running disparity exceeds 255 or -255 the disparity_overflow_o output will be 

asserted to alert user logic to the problem. 

(63,51) BCH Encoder 

This block implements the cyclic coding algorithm for a primitive binary (63,51) BCH code on the 

51 bit data from the MRL encoder.  The block computes the 12 parity bits for the encoded data 

within a single block_clk_i clock cycle.  It also computes the disparity between 1s and 0s in those 

12 parity bits and passes that number back to the MRL block for use in maintaining the running 

disparity within that clock cycle. 

Data Format 

The output data is valid when the data_valid_o signal is asserted.  The format of the 64 bit output 

data word is shown in the following table. 

 

Bit 

Position 

63 62 61     

59 

58                  

35 

34     

32 

31 30   

28 

27               

4  

3      

1 

0 

Descriptio

n 

Pad 

Bit 

MRL<

2> 

C<11:9

> 

Data<47:24> C<8:6> MRL<

1> 

C<5:3> Data<23:0> C<2:0

> 

MRL<

0> 

 

Decoding Data Flow 

Data comes in to the decoder in 64 bit words synchronous to and valid on the rising edge of block_clk_i.  

There are two steps to the decoder, BCH decoding and MRL decoding.  The operation of these blocks 

occurs normally unless they are held in reset or they are disabled.  The MRL block completes in 1 

block_clk_i clock cycle.  The BCH decoder takes 3 block_clk_i clock cycles.  The decoder thus takes 4 
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block_clk_i clock cycles to decode data.  After the initial 4 clock latency, data is continuously coming out 

of the decoder. 

Data Format 

The input data must be valid on the rising edge of block_clk_i and it must be in the following 

format. 

 

Bit 

Position 

63 62 61     

59 

58                  

35 

34     

32 

31 30   

28 

27               

4  

3      

1 

0 

Descriptio

n 

Pad 

Bit 

MRL<

2> 

C<11:9

> 

Data<47:24> C<8:6> MRL<

1> 

C<5:3> Data<23:0> C<2:0

> 

MRL<

0> 

 

(63,51) Decoder 

This step takes 3 block_clk_i clock cycles to complete.  The operation is pipelined by the 

decoding steps which are syndrome computation, error location polynomial calculation, and error 

search.  The output after these three decoding stages is the 51 bit corrected data word and an 

indication of the number of errors detected or corrected in the data.  The error_cnt_o<1:0> value is 

delayed by one clock cycle so that it matches up with the actual output data word from the decoder 

which is delayed by one cycle for MRL decoding. 

The (63,51) BCH code has a minimum distance of 5, so all error patterns up to 4 bits in length will 

be detected.  However since the code will attempt to correct all 1 and 2 error patterns, there is 

some chance that some 3 or more input error patterns could be recognized as 2 input error patterns 

and corrected wrongly.  There is no way of knowing if this occurred or not.  Some 3 or more input 

error patterns will be detected correctly.  If this code is used in an application where error 

detection is important, then assume that if error_cnt_o<1:0> is 10 or 11 (2 or 3 or more errors 

respectively) that there are errors in the received word and do not use it as valid data. 

(51,48) MRL Decoder 

This stage is very simple.  It completes in a single clock cycle and the 48 bit data is output on the 

rising edge of block_clk_i.  The following rules define how this block operates. 

• If MRL<2:0> = 010 then invert the data bits to decode them 

• Else if MRL<2:0> = 101 then leave the data bits alone to decode them 

• Else set the mrl_error_o signal to a 1 to indicate a decoding error 

 

The MRL decoder provides one additional error correction check on the data.  If the BCH decoder 

incorrectly decoded a word but one of the MRL bits was made to be incorrect, the MRL decoder 

could detect that and mark the entire data word as in error with the mrl_error_o signal. 

Synchronization 

In order to operate correctly in a communication system, the encoder and decoder must be synchronized.  

There is no internal synchronization provided in the ECC block and this must be handled with additional 

external logic.  One possible means of synchronizing is waiting a fixed amount of time, checking for 

normal data reception.  If it doesn’t occur, stop the decoder for one symbol time and then start it again.  

Repeat this process until normal data reception occurs.  The decoder can be stopped by using the enable_in 

input signal.  Another means would be to use an external framer or synchronizer and only performing the 

encoding / decoding on the data payload. 
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Functional Timing 

All the registers in the encoder and decoder block are clocked by the rising edge of block_clk_i.  All inputs 

except the asynchronous reset signal (reset_n_i ) to the blocks must be valid for the rising edge and all 

outputs from the blocks are output on the rising edge of this clock.  The following table shows how the 

various control signals for the encoder and decoder should be asserted and when valid output data will be 

present from each 

. 

Clock Cycle # Signals 

0 1 2 3 4 5 6 7 8 

Common Signals  

reset_n_i 0 1 1 1 1 1 1 1 1 

Encoder Signals  

enable_i 0 0 1 1 1 1 1 1 1 

data_in_i X V V V V V V V V 

pad_bit_i X V V V V V V V V 

data_out_o X X X X V V V V V 

Decoder Signals  

enable_i 0 0 1 1 1 1 1 1 1 

data_in_i X V V V V V V V V 

pad_bit_i X V V V V V V V V 

data_out_o X X X X X X V V V 

pad_bit_o X X X X X X V V V 

X = Don’t care or invalid data 

V = Valid data or signal 

 

The worse case timing path for the encoder is in the MRL encoding block.  There is a lot of combinational 

logic in this block to calculate the running disparity and then make a decision based on the current running 

disparity and the accumulated running disparity as to which way to encode the data.  This process could be 

fairly easily pipelined to improve performance at the cost of extra latency.  The worse case timing path for 

the decoder is in the error search block.  This is a very wide combinational logic block that must test every 

single error position in the error polynomial and test for 0s by performing multiplication and addition.  The 

block must also then count the number of errors detected.  This block could likely be pipelined between the 

actual error search and error counting fairly easily at the cost of an additional stage of latency.  For current 

generation serial applications the performance of both blocks exceeds the serial data rate that the 

transceivers support.  The encoder can function with a serial data rate of up to 4.34 Gbps and the decoder 

can function with a serial data rate of up to 6.74 Gbps.  It may be possible to remove some of the pipelining 

in the decoder design since there is so much slack beyond the maximum serial data rate to reduce the 

latency below 4 clock cycles. 
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Test Benches 

There are block level test benches for the blocks and a top level test bench that thoroughly tests the error 

correcting capabilities through the use of a bit error rate tester block.   

Encoder Block Level Test Benches 

There is one block level test bench for the encoder to simulate the functionality of the maximum run length 

block.  This test bench is contained in the file \encoder_block_sims\mrl_51_48_encoder_tb.vhd.  This test 

bench simply provides the clock and control signals, instantiates the MRL block of the encoder and sends a 

data pattern through.  The resulting MRL encoding must be manually checked.  A Mathcad program exists 

that implements the MRL encoding functionality for use in manual checking and is located at 

\encoder_block_sims\mrl_48_51.mcd. 

Decoder Block Level Test Benches 

There are two simple decoder block level simulations located at 

\decoder_block_sims\gf_2_6_inverter_tb.vhd and \decoder_block_sims\gf_2_6_mult_tb.vhd.  The first one 

simply goes through all the possible 6 bit GF(2
6
) patterns to force the block to display the inverse which 

must be checked manually from a Galois Field table.  The second one simply tries several different 6 bit 

GF(2
6
) input values to the multiplier to force the block to display the result and then automatically checks 

that it is correct. 

Encoder and Decoder Block Level Simulation 

The rest of the block level simulations are contained in a single file located at 

\encoder_decoder_block_sim\bch_63_51_tb.vhd.  This test bench creates the clock and control signals and 

connects together all of the individual functional blocks of the encoder and decoder.  It does not use the top 

level vhdl files for either the encoder or decoder, but instead replicates that connectivity.  The test bench 

then inserts data into the encoder and also inserts errors into the data between the encoder and decoder.  

The following things are automatically checked throughout the data path. 

• The encoder parity bit generation 

• The decoder syndrome computation 

• The decoder error polynomial coefficient calculation 

• The decoder output data 

• The decoder output error count 

 

The expected values hard coded in the test bench for all of these tests were manually calculated using a 

Mathcad program model of the encoder and decoder. 

High Level Bit Error Rate Test Simulation 

The top level encoder and decoder blocks are instantiated and connected together in a single test bench 

along with a bit error rate test pattern generator and bit error rate test receiver.  This test bench is contained 

in \encoder_decoder_bert_sim\encoder_decoder_bert_tb.vhd.  The BERT pattern generator and receiver 

blocks are other Plexus building blocks that have the ability to send and receive and count bit errors for 

three different patterns including a 2
11

 – 1 PRBS, a 2
31

 – 1 PRBS, and a programmable data word pattern.  

The purpose of this test bench is to give an overall stress to the encoder and decoder blocks and to gather 

some information about its performance.  The test bench connects the BERT pattern generator to the 

encoder, then connects the encoder output data with or without errors inserted to the decoder, and then 

connects the decoder output to the BERT receiver.  The test bench also creates the necessary clock and 

control signals.  The following tests and self checks are performed. 
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• All single and double bit error patterns are inserted into the receive data 

• After single and double bit error insertion, the test bench automatically checks to be sure that the 

BERT receiver did not detect any errors (they were all corrected) 

• All three bit error patterns are inserted into the receive data 

• The number of three bit error patterns that are inserted is counted (err_3_pattern_cnt) 

• The number of three bit error patterns that are identified as three or more bit error patterns is 

counted (err_3_detected_cnt) 

• The receive pad bit is checked versus what is sent into the block 

• The fact that bit errors are counted is checked after the three bit error pattern insertion is done (just 

that there were errors, not the actual number is checked) 

• The disparity_overflow_o flag is checked to make sure that it does not get asserted 

 

All self checks in the test bench are done with assertions and ERROR or WARNING messages will be 

printed in the simulation transcript window if any errors occur. 

At the beginning of this test bench file is a package that contains constant definitions that control how some 

of the tests work.  The following table describes those constants. 

 

Constant Description Default 

Value 

Stresses 

BLOCK_CLK_PE

RIOD 

The clock period for the word 

clock (not important for 

functional sims) 

20 ns  

ERR_CNT_SIZE 10  

SYNC_LOSS_CN

T_SIZE 

8  

WORD_CNT_SIZ

E 

64  

SYNC_ERR_CN

T 

12  

UNSYNC_ERR_

CNT 

1228  

SYNC_WORDS 

These constants map directly 

to generics in the BERT 

pattern generator and pattern 

receiver 

256  

INVERT_DATA Specifies the state of the 

invert_data_i signal to the 

BERT pattern generator and 

receiver (1=invert data pattern, 

0=don’t invert) 

0  

DATA_WORD 
The constant data word to use 

in the word pattern test 

A5BFC8E14

729 

Try patterns that will cause the 

MRL running disparity register to 

overflow. 

PRBS_2_11_SEE

D 

The value to be connected to 

prbs_2_11_seed_i of the 

BERT pattern generator 

00000000001  
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Constant Description Default 

Value 

Stresses 

PRBS_2_31_SEE

D 

The value to be connected to 

prbs_2_31_seed_i of the 

BERT pattern generator 

00000000000

00000000000

000000001 

 

TEST_DURATIO

N 

The value to be connected to 

the max_word_cnt_i signal on 

the BERT receiver 

0x270000  

TIME_BETWEE

N_ERRORS 

The number of clock cycles to 

wait between error insertions 

10  

BERT_PATTERN 

Selects which pattern to the 

BERT blocks should use 

00 for Word, 

01 for PRBS 

2
11

 – 1, or 10 

for 2
31

 – 1 

 

DISPARITY_RE

G_SIZE 

Sets the size of the running 

disparity register in the MRL 

encoder. 

9 Set this to a smaller value such as 5 

so that disparity overflows will 

occur. 
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10 Appendix B – BERT Block Datasheet 

 

 

 

Bit Error Rate Test Block Datasheet 

 

Document Number: 9132.041 

EC/Revision: Rev 1.1 

Revision Date: March 7, 2005 

Author: David Carney 

 

 

Features: 

• Supports variable length data 

word sizes from 8 bits to 64 bits 

• Supports 2
11

 – 1 and 2
31

 -1 PRBS 

data patterns 

• Supports constant data word data 

pattern 

• Receive block automatically 

synchronizes to the data pattern and 

then counts bit errors 

 

 

Description: 

The core consists of two separate blocks, the BERT pattern 

generator and the BERT receiver.  The pattern generator 

provides a variable width output data word based on the 

selected data pattern.  The receiver synchronizes to the 

selected data pattern and once synchronized counts bit errors 

between the received data and the expected data.  The core is 

written in VHDL. 

 

Required VHDL Files 

Hierarchy: 

bert_pattern_gen.vhd 

 prbs_generator.vhd 

bert_receiver.vhd 

 bert_receiver_control.vhd 

 prbs_generator.vhd 

 word_compare.vhd 

 

Required Libraries: 

use ieee.std_logic_arith.all;    (standard VHDL library) 

use ieee.std_logic_unsigned.all;  (standard VHDL library) 

use ieee.std_logic_1164.all;  (standard VHDL library) 

 

 



  149 

 

Pattern Generator Description 

 

Pattern Generator Functional Diagram: 
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Pattern Generator Timing: 

Block Parameters Chip Speed 

Grade 

Package Area Speed 

(MHz) 

WORD_SIZE = 48 Altera Stratix GX 

(EP1SGX25FF1020) 

5 1020 pin 

BGA 

321 LCs 

282 LC Registers 

 

422.12 

WORD_SIZE = 8 Altera Stratix GX 

(EP1SGX25FF1020) 

5 1020 pin 

BGA 

87 LCs 

82 LC Registers 

422.12 

WORD_SIZE = 64 Altera Stratix GX 

(EP1SGX25FF1020) 

5 1020 pin 

BGA 

428 LCs 

362 LC Registers 

422.12 

 

 

 

Pattern Generator Parameters: 

Generic Default Value Description 

WORD_SIZE 48 Integer that determines how many bits are in the output data block.  

Valid range for this parameter is between 8 and 64. 
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Pattern Generator Input/Output Descriptions: 

Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

word_clk_i std_logic NA NA I Clock used by the block.  A new output 

data word is output on every rising edge 

of this clock. 

reset_n_i std_logic NA NA I Reset signal for the core (0=reset state, 

1=out of reset).  This input is 

asynchronous. 

invert_data_i std_logic NA NA I Selects whether or not to invert the 

pattern data to be output (1=inverted, 

0=not inverted). 

enable_i std_logic    This input enables the PRBS generators 

and the output register (1=enabled, 

0=disabled) 

pattern_select_

i 

std_logic_vector 1 0 I Selects the pattern to be captured into 

the output data register. 

00=Data word 

01=PRBS 2
11

 – 1 

10=PRBS 2
31

 – 1 

11=Data word 

This input is sampled every clock cycle 

and will select the corresponding pattern 

output. 

prbs_2_11_see

d_i 

std_logic_vector 10 0 I The value to seed the 11 LFSR stages 

with of the PRBS 2
11

 – 1 pattern 

generator.  By default out of reset, the 

generator is seeding with: 

000 0000 0001 

load_2_11_see

d_i 

std_logic NA NA I When this signal is active high, the 

PRBS 2
11

 – 1 pattern generator LFSR is 

loaded with the bits on the  

prbs_2_11_seed_i signal.  If the pattern 

was being generated when this happens, 

it will start over at the new seed. 

prbs_2_31_see

d_i 

std_logic_vector 30 0 I The value to seed the 31 LFSR stages 

with for the PRBS 2
31

 – 1 pattern 

generator.  By default out of reset, the 

generator is seeding with: 

0x00000001 

load_2_31_see

d_i 

std_logic NA NA I When this signal is active high, the 

PRBS 2
31

 – 1 pattern generator LFSR is 

loaded with the bits on the  

prbs_2_31_seed_i signal.  If the pattern 

was being generated when this happens, 

it will start over at the new seed. 
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Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

data_word_i std_logic_vector X 0 I The value for the constant data output 

word pattern. 

load_word_i std_logic NA NA I When this signal is active high, the value 

on data_word_i is latched into the data 

word register on the rising edge of 

word_clk_i. 

bert_data_o std_logic_vector X 0 O The output data word from the pattern 

generator.  The data is in order from 

most significant bit (MSb) to least 

significant bit (LSb).  In a serial 

application the MSb should be 

transmitted first. 

 

X = WORD_SIZE - 1 

 

 

Pattern Generator Input Truth Table: 

n_reset_i enable_i pattern_select_i

<1:0> 

Core State 

0 0 XX The pattern generator is in reset, and bert_data_o is all 

zeros.  All internal registers are also set to all zeros. 

1 0 XX Output disabled – Core disabled meaning no data is 

latched in to the output stage register and the LRSRs are 

not shifted. 

1 1 01 The PRBS 2
11

 – 1 pattern is selected and is being 

generated.  On each subsequent rising edge of word_clk_i 

the next pattern word will be output. 

1 1 10 The PRBS 2
31

 – 1 pattern is selected and is being 

generated.  On each subsequent rising edge of word_clk_i 

the next pattern word will be output. 

1 1 00 or 11 The data word pattern is selected and will be output on 

each rising edge of word_ckl_i. 
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Bit-Error-Rate-Test Receiver Description 

 

Bit-Error-Rate-Test Receiver Functional Diagram: 
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Bit-Error-Rate-Test Receiver Timing: 

Block Parameters Chip Speed 

Grade 

Package Area Speed 

(MHz) 

WORD_SIZE = 48 

OTHERS = default 

Altera Stratix GX 

(EP1SGX25FF1020) 

5 1020 pin 

BGA 

1679 LCs 

727 LC Registers 

103.73 

WORD_SIZE = 8 

OTHERS = default 

Altera Stratix GX 

(EP1SGX25FF1020) 

5 1020 pin 

BGA 

908 LCs 

279 LC Registers 

126.25 

WORD_SIZE = 64 

OTHERS = default 

Altera Stratix GX 

(EP1SGX25FF1020) 

5 1020 pin 

BGA 

2091 LCs 

907 LC Registers 

109.39 

WORD_SIZE=16, 

USE_PRBS_2_31 

= FALSE, 

USE_PROG_WOR

D = FALSE, 

OTHERS = default 

Altera Stratix GX 

(EP1SGX25FF1020) 

7 1020 pin 

BGA 

526 LCs 

272 LC Registers 

107.48 

 

 

 

Bit-Error-Rate-Test Receiver Parameters: 

Generic Default 

Value 

Description 

WORD_SIZE 48 Integer that determines how many bits are in the input data 

word.  Valid range for this parameter is 8 to 64 bits. 

ERR_CNT_SIZE 8 Integer that determines how many bits are in the error count 

counter.  Valid range for this parameter is 8 to 31 bits. 

SYNC_LOSS_CNT_SIZE 8 Integer that determines how many bits are in the 

synchronization loss counter.  Only synthesis restriction on this 

parameter. 

WORD_CNT_SIZE 64 Integer that determines how many bits are in the received word 

counter.  Only synthesis restriction on this parameter. 

SYNC_ERR_CNT 12 Integer number for the maximum number of errors that can 

occur over a specified number of words (SYNC_WORDS) for 

synchronization to occur.  If more errors than this occur, the 

block will continue trying to synchronize.  Only synthesis 

restriction on this parameter. 

UNSYNC_ERR_CNT 1228 Integer number for the maximum number of errors that can 

occur over a specified number of words (SYNC_WORDS) for 

synchronization to be maintained.  If more errors than this 

occur, the block will lose synchronization and will then try to 

resynchronize.  Only synthesis restriction on this parameter. 

SYNC_WORDS 256 Integer number for the number of words to count errors over to 

determine synchronization state.  Only synthesis restriction on 

this parameter. 
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Generic Default 

Value 

Description 

USE_PRBS_2_11 TRUE Boolean value that specifies whether logic for the PRBS 2
11

 – 1 

pattern will be instantiated with a conditional compile.  The 

purpose of this is to allow the block to be smaller for cases 

where only certain patterns are needed.  It is important that if 

this is set to FALSE that the PRBS 2
11

 – 1 pattern not be 

selected, because if it is the block will not function correctly.  

The synthesis tool will not flag an error. 

USE_PRBS_2_31 TRUE Boolean value that specifies whether logic for the PRBS 2
31

 – 1 

pattern will be instantiated with a conditional compile.  The 

purpose of this is to allow the block to be smaller for cases 

where only certain patterns are needed.  It is important that if 

this is set to FALSE that the PRBS 2
31

 – 1 pattern not be 

selected, because if it is the block will not function correctly.  

The synthesis tool will not flag an error. 

USE_PROG_WORD TRUE Boolean value that specifies whether logic for the 

programmable word pattern will be instantiated with a 

conditional compile.  The purpose of this is to allow the block 

to be smaller for cases where only certain patterns are needed.  

It is important that if this is set to FALSE that the 

programmable word pattern not be selected, because if it is the 

block will not function correctly.  The synthesis tool will not 

flag an error. 

 

 

Bit-Error-Rate-Test Receiver Input/Output Descriptions: 

Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

word_clk_i std_logic NA NA I Clock used by the block.  A new input 

data word is captured by the block on 

every rising edge of this clock. 

reset_n_i std_logic NA NA I Reset signal for the core (0=reset state, 

1=out of reset).  This input is 

asynchronous. 

enable_i std_logic NA NA I When asserted high, causes the input 

data word to be captured on the rising 

edge of word_clk_i and allows all other 

logic in the block to function 

(1=enabled, 0=disabled). 

invert_data_i std_logic NA NA I Selects whether or not to invert the input 

pattern data before processing 

(1=inverted, 0=not inverted). 
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Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

pattern_select_

i 

std_logic_vector 1 0 I Selects the pattern to be synchronized to 

and bit errors counted for after 

synchronization. 

00=Data word 

01=PRBS 2
11

 – 1 

10=PRBS 2
31

 – 1 

11=Data word 

resync_i std_logic NA NA I When asserted active high causes the 

block to resynchronize to the data.  This 

will not reset the word count and error 

count registers though and once 

synchronization occurs, they will 

continue counting from their current 

state. 

data_word_i std_logic_vector X 0 I The value for the constant data input 

word pattern. 

bert_data_i std_logic_vector X 0 I The word input data to be error checked. 

This data must be valid on the rising 

edge of word_clk_i.  The data is 

assumed to be in most significant bit 

(MSb) to least significant bit (LSb) 

transmission order to match the BERT 

pattern generator. 

run_forever_i std_logic   I Specifies whether the test will be 

conducted for a finite word count or will 

be conducted open-ended forever. 

0 = run to max_word_count_i 

1 = run open-ended 

max_word_co

unt_i 

std_logic_vector Z 0 I Specifies the word count value that 

when reached will stop the test if 

run_forever_i is set to 0. 

sync_loss_cnt

_o 

std_logic_vector W 0 O Output to indicate how many times the 

block has lost synchronization during a 

test.  This output is updated on the rising 

edge of word_clk_i. 

err_cnt_o std_logic_vector Y 0 O Counter output that indicates how many 

bit errors have been counted during the 

test.  This output is updated on the rising 

edge of word_clk_i.  If the error counter 

overflows, this value will wrap around, 

but the err_cnt_overflow_o signal will 

be asserted. 

err_cnt_overfl

ow_o 

std_logic NA NA O If the error counter output overflows, 

this signal will be set to a 1 on the 

word_clk_i cycle that the overflow 

occurred.  This output is updated on the 

rising edge of word_clk_i. 
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Signal Name Signal Type Vector Range IO Description 

  Vector 

high 

(MSB) 

Vector 

low 

(LSB) 

  

word_cnt_o std_logic_vector Z 0 O Counter output that specifies how many 

words have been tested for bit errors. 

The word counter will start at 0 after 

synchronization occurs and will 

increment by 1 on each word_clk_i 

rising edge that the block is enabled until 

the counter reaches max_word_count_i. 

test_done_o std_logic NA NA O Output that indicates that the 

word_cnt_o counter has reached 

max_word_count_i (1=counter reached, 

0=counter not yet reached).  This signal 

is updated on the rising edge of 

word_clk_i.  After this signal is asserted, 

the test will stop, and the block must be 

reset to conduct another test. 

W = SYNC_LOSS_CNT_SIZE - 1 

X = WORD_SIZE – 1 

Y = ERR_CNT_SIZE – 1 

Z = WORD_CNT_SIZE – 1 

 

 

Bit-Error-Rate-Test Receiver Input Truth Table: 

n_reset

_in 

enable_

in 

pattern_

select_i<

1:0> 

Core State 

0 X XX The BERT receiver is in reset.  err_cnt_o is set to 0, sync_loss_cnt_o 

is set to 0, word_cnt_o is set to 0, and all output status signals are set 

to the inactive state.  All internal registers are also set to their default 

states. 

1 0 XX Disabled - Core disabled meaning no data is latched in from the 

bert_data_i signal, the internal pattern generators are not updated, and 

no error checking or word counting occurs.  When the core is once 

again enabled, it will continue operating where it left off.  If it was 

synchronized before being disabled it may need to resynchronize.  

1 1 00 or 11 The data word pattern is selected for synchronization and error 

detection. 

1 1 01 PRBS 2
11

 – 1 pattern selected for synchronization and error detection. 

1 1 10 PRBS 2
31

 – 1 pattern selected for synchronization and error detection. 
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Background 

For detailed background information on performing BERT in serial digital multi gigabit communication 

systems, refer to section 4. 

Functional Description 

The functional description of the pattern generator and the receiver of the bit-error-rate-test block is 

described in this section.  A description of the patterns that are generated and tested in this BERT block are 

given in the following table. 

Pattern Length (bits) Length in 

Time for 

3.125 Gbps 

Generator 

Polynomial for 

LFSR 

Max 0s 

Run 

(bits) 

Max 1s 

Run 

(bits) 

Programmable Word 8 – 64 bits 2.56 ns – 

20.48 ns 

NA 64 64 

2
11

 – 1 PRBS 2047 655.04 ns X
11

 + X
9
 + 1 10 11 

2
31

 – 1 PRBS 2,147,483,647 687.2 ms X
31

 + X
28

 + 1 30 31 

 

Pattern Generator Data Flow 

The pattern generator block contains three separate pattern generators which are the 2
11

 – 1 PRBS 

generator, the 2
31

 – 1 PRBS generator and the data word generator.  The two PRBS generators are very 

similar and are implemented using LFSRs as shown in the following figures.   

b0 b1 b2

+

b8 b9 b10
Data Out

 

Figure - LFSR Implementation for 2
11

 - 1 PRBS Generator 

b0 b1 b2

+

b28 b29 b30
Data Out

b27
 

Figure - LFSR Implementation for 2
31

 - 1 PRBS Generator 

 

The LFSRs are implemented using combinational logic to shift them WORD_SIZE times per word_clk_i 

clock cycle.  These LFSRs are based on the polynomial for each pattern shown in the following table.  The 

LFSRs produce repeating bit patterns and they can be started at any point in the repeating pattern by 

loading a seed value into the LFSR register bits.  This is done using the seed inputs to the block and 

asserting the corresponding seed load signals. 

The programmable data word is simply generated by a register in the block that captures an input data word 

when the load_word_i signal is asserted.  It is possible to have the pattern generator generate any desired 

pattern by providing a new word on each word_clk_i cycle. 

The next stage of the pattern generator is the selection of the pattern to be transmitted through the mux 

using the pattern_select_i signal. 
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After the mux is a selectable inverter that allows the pattern to be inverted or not using the invert_data_i 

signal. 

The final stage is the selected pattern is captured into an output register. 

If only a single PRBS pattern is needed, some logic overhead can be eliminated by simply instantiating the 

PRBS generator block (prbs_generator.vhd).  The inputs and outputs for this block are described in the 

comments in the source code. 

Receiver Data Flow 

The first stage of the receiver data flow is the selectable inverter which inverts the data coming in if the 

invert_data_i signal is asserted. 

The next stage of the receiver data flow is the input buffer.  The buffer is 6 words long to allow for enough 

bits to be captured to seed the 2
31

 – 1 PRBS generator within the receiver that is used for generating the 

expected data.  The first 4 words contain at least 32 bits since the minimum data word size is 8 bits.  The 

next 2 words in the buffer are used to save the data for long enough to make the comparison with the output 

from the PRBS generator.  A block diagram of the buffer is shown in the following figure. 

reset_n_i

Buffer
Stage 1

bert_data<x:0>

buf_data<2x+1:x+1>

word_clk_i

Buffer
Stage 2

enable_i

buf_data<x:0>

Buffer
Stage 3

Buffer
Stage 4

buf_data<3x+2:2x+2>

buf_data<4x+3:3x+3>

Buffer
Stage 5

Buffer
Stage 6

buf_data<6x+5:5x+5>

buf_data<5x+4:4x+4>

 

Figure - Pattern Receiver Input Buffer Block Diagram 

The last stage of the receiver data flow after synchronization has taken place is the comparison of the 

received data with the expected data and the counting of the bit errors.  The number of bit errors for the 

selected pattern is then added to the current value in the error counter and the result is captured in the 

output register.  Also after each comparison, the word count register is incremented by one.  The 

comparison is made directly with the data word in the third stage of the buffer for the PRBS patterns.  In 

the synchronization of the programmable word pattern, the starting index in the buffer is determined for 

where the word is lined up in the buffer.  The comparison is made bit by bit starting at the starting index 

and continuing for all of the bits in the word. 

The synchronization and the error counting stages are controlled by the Synchronization and BERT control 

block.  This block contains a state machine that controls the appropriate enables and outputs.  A high level 

flow for how the synchronization block works after coming out of reset is given in the following table. 
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Step Description for PRBS Patterns Description for Programmable Word Pattern 

1 Wait two clock cycles for the data buffer to be filled up 

2 If the selected pattern is a PRBS pattern, 

then assert the appropriate load signal and 

enable signal for the selected PRBS pattern 

generator.  The received data is loaded into 

the appropriate PRBS generator as a seed 

value. 

If the selected pattern is the programmable word 

pattern, then increment the word buffer index by  

one starting from 0 and continuing until X (wrap 

back to 0) 

3 Add the error count value for the selected pattern to an accumulator starting at 0. 

4 Goto step 3 (repeat SYNC_WORDS number of times) 

5 If the error count accumulator is less than SYNC_ERR_CNT then go to step 6 else go back to step 

2. 

6 Assert the synchronization status output, turn on the enables for the error counter and the word 

counter, and set the select lines for the error count mux to select the correct error count value. 

7 Add the error count value for the selected pattern to an accumulator starting at 0. 

8 Goto step 7 (repeat SYNC_WORDS number of times) 

9 If the error count accumulator is greater than UNSYNC_ERR_CNT then deassert the 

synchronization status output, disable the error counter and word counter and go to step 2.  

Otherwise go back to step 7. 

 

The synchronization algorithm will search for synchronization at startup by ensuring that the bit error rate 

is below a certain threshold defined by the following equation.  

BLOCKSSYNCSIZEBLOCK

CNTERRSYNC
BER

__

__

×
=  

 It will then continuously monitor the synchronization status and if the bit error rate increases above the 

threshold defined by the following equation, assumes that synchronization has been lost and then again 

tries to resynchronize. 

BLOCKSSYNCSIZEBLOCK

CNTERRUNSYNC
BER

__

__

×
=  

 

If the value of SYNC_ERR_CNT is set lower than UNSYNC_ERR_CNT there is hysteresis built into the 

synchronization so the block will not jump in and out of synchronization when the channel gets noisy. 

If the test continues until the word_cnt_o value reaches the max_word_cnt_i value, then the test will stop 

and the test_done_o bit will be asserted.  The BERT receiver block will not do anything more until it is 

reset. 

Functional Timing 

All input signals in the design are captured on the rising edge of word_clk_i and all output signals in the 

design clocked out on the rising edge of word_clk_i.  All actions in response to input signals will occur on 

the first rising edge that the signal is valid for except the reset_n_i signal which is asynchronous. 

There are no real restrictions on the relative timings of input control signals to the block.  A reasonable 

order of operations for a design including both the pattern generator and the bert receiver is given in the 

following table. 
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Clock Cycle # Signals 

0 1 2 3 4 5 6 7 8 

Common Signals  

reset_n_i 0 1 1 1 1 1 1 1 1 

invert_data_i X X I I I I I I I 

Pattern Generator  Signals  

pattern_select_i 11 11 11 PQ PQ PQ PQ PQ PQ 

prbs_2_11_seed_i X X V X X X X X X 

load_2_11_seed_i 0 0 1 0 0 0 0 0 0 

prbs_2_31_seed_i X X V X X X X X X 

load_2_31_seed_i 0 0 1 0 0 0 0 0 0 

data_word_i X X V X X X X X X 

load_word_i 0 0 1 0 0 0 0 0 0 

bert_data_o 0s 0s 0s 0s V V V V V 

Receiver Signals  

enable_i 0 0 0 1 1 1 1 1 1 

pattern_select_i 11 11 11 PQ PQ PQ PQ PQ PQ 

max_word_count_i X X X V V V V V V 

data_word_i X X V V V V V V V 

X = Don’t care 

V = Valid data or signal 

I = 0 or 1 

PQ = 00 for Programmable word, 01 for PRBS 2
11

 – 1, or 10 for 2
31

 – 1 

 

The pattern generator can function at very high rates for any valid data word size between 8 and 64 bits.  

For the Altera Stratix GX device, the pattern generator can function at the highest allowable internal clock 

frequency.  The bert receiver is much more limited in performance however.  As the word size increases 

the maximum operating frequency decreases, but not as fast as the effective data rate increases.  For multi-

gigabit data rates, a word size of 32 bits or higher may be required. 

The worst case timing path in the pattern receiver is for the data word pattern.  To improve the timing of 

the design, an architecture change would need to be made to the synchronization design for the word 

pattern.  Instead of searching through two input data word buffer stages for the start of the programmable 

word the receiver could be designed to just look in the first input data word buffer stage and have some 

external logic synchronize the incoming data so that it lines up in that stage.  The receiver could output a 

“bit_slip” signal that could trigger the external logic to slip the data by 1 bit using a barrel shifter.  When 

using this receiver in a multi-gigabit serial application, the Xilinx and Atlera transceivers support this bit 

slip functionality. 
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Test Benches 

The test bench for the bert pattern generator and bert receiver is contained in the file bert_tb.vhd.  This test 

bench instantiates the bert pattern generator block and the bert receiver block and generates the word_clk_i 

signal and all of the necessary control signals.  The test bench then monitors the output signals and provides 

self checking with assertions.  Any simulation errors will appear in the simulation transcript window.  

There are two main parts to the bert_tb.vhd file, a package section to define constants, and the main test 

bench entity and architecture.  There are three separate packages defined, one for each of the three data 

patterns.  The packages are defined first in the file and then the package for the desired test is selected with 

a “use” statement.  This must be manually edited to switch between tests.  To conduct a test, initiate the 

corresponding .do script from within Modelsim for each type of pattern (bert_tb_word.do, 

bert_tb_prbs_2_11.do, or bert_tb_prbs_2_31.do).  The script will set up the simulation, set up the 

waveform window, and conduct the simulation for an appropriate amount of time for each type of test. 

Package Constants 

The following table lists all of the constants defined in the packages and what they are for.  Also listed are 

values for the constants that can be used to stress the design. 

Constant Description Default 

Value 

Stresses 

WORD_CLK_PE

RIOD 

The clock period for the word 

clock (not important for 

functional sims) 

20 ns  

WORD_SIZE 48  

ERR_CNT_SIZE 10 Use a smaller value such as 8 to 

cause a small enough register size 

to cause overflows in the errors 

counted 

SYNC_LOSS_CN

T_SIZE 

8  

WORD_CNT_SIZ

E 

64  

SYNC_ERR_CN

T 

Word = 2,  

PRBS = 12 

 

UNSYNC_ERR_

CNT 

Word = 20, 

PRBS = 1228 

 

SYNC_WORDS 

These constants map directly 

to generics in the pattern 

generator and pattern receiver 

Word = 10, 

PRBS = 256 

 

INVERT_DATA Specifies the state of the 

invert_data_i signal to each 

block 

0  

DATA_WORD 

The constant data word to use 

in the word pattern test 

48 bits = 

AA55FF0055

AA 

8 bits = A5 

64 BITS = 

00A0000F00

005040 

Try patterns that have symmetry to 

cause the receiver to synchronize at 

the wrong place. 
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Constant Description Default 

Value 

Stresses 

PRBS_2_11_SEE

D 

The value to be connected to 

prbs_2_11_seed_i of pattern 

generator 

00000000001  

PRBS_2_31_SEE

D 

The value to be connected to 

prbs_2_31_seed_i of pattern 

generator 

00000000000

00000000000

000000001 

 

TEST_DURATIO

N The value to be connected to 

the max_word_cnt_i signal on 

the bert receiver 

Word pattern 

= FFF 

PRBS 

patterns = 

30000 

 

ERRORS_TO_IN

SERT 

Number of bit errors to insert 

into the data.  The errors are 

inserted one per block until 

this number of errors is 

reached. 

400 Choose value that results in sync 

loss and verify that sync loss 

occurs.  This may need to be 

changed in conjunction with the 

sync parameters. 

ERROR_BURST If set to a 1, the test will insert 

a single error burst to cause a 

loss of sync and automatically 

check for that loss of sync 

1 Set to 0 to test the error counting 

functionality in the bert receiver. 

TIME_BETWEE

N_ERRORS 

If errors are to be inserted into 

the data, they are inserted 1 

per word and spaced apart by 

this many words. 

250  

DELAY_TO_BU

RST_ERROR 
The amount of clock cycles to 

delay after synchronization 

occurs before the error burst is 

sent. 

800 Adjusting this value can cause the 

error burst to line up with the sync 

check in the bert receiver such that 

not enough errors are present for a 

loss of sync. 

TEST_PATTERN 

Selects which pattern to test 

00 for Word, 

01 for PRBS 

2
11

 – 1, or 10 

for 2
31

 – 1 

 

TRANSMIT_EN

ABLE_DELAY 

Number of clock cycles to 

delay from reset to enabling 

the transmitter 

10  

RECEIVE_ENAB

LE_DELAY 

Number of clock cycles to 

delay from reset to enabling 

the receiver 

20  

DISABLE_RECE

IVER_DELAY 

The number of clock cycles to 

disable the receiver for during 

the test.  If set to 0, the 

receiver will not be disabled. 

0 Set to a positive number and verify 

that the receiver behaves as 

expected while being disabled. 

LOAD_WORD_D

ELAY 

The number of clock cycles to 

wait before loading the 

programmable word in the 

30  
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Constant Description Default 

Value 

Stresses 

pattern generator 

TRANSMIT_DEL

AY 

There is a buffer delay on the 

data transmitted from the bert 

pattern generator, to the data 

received at the bert receiver.  

This number specifies the 

number of clock cycles for 

that delay. 

10 (Valid 

range is 0 to 

WORD_SIZE 

– 1) 

Change this value to watch the 

programmable word pattern be 

synchronized to at different 

indexes. 

TEST_TIMEOUT Maximum number of clock 

cycles to wait after the test 

bench counter reaches 

TEST_DURATION while 

checking for a test_done_o 

assertion by the bert receiver.  

If this counter expires without 

seeing a test_done_o assertion, 

an error is reported. 

10000  

SYNC_TIMEOU

T 
The amount of time to wait 

before checking to see if initial 

synchronization occurred 

Defined by 

other 

constants, do 

not change. 

 

 

Self Checking 

The test bench contains self checking functionality.  The following is a list of things that are checked. 

• Initial synchronization occurs within a reasonable amount of time 

• The number of errors counted matches the number inserted (when no burst error insertion is 

present) 

• The number of errors counted is larger than the number inserted (when burst error insertion is 

present) 

• That the test stops at the maximum word count 

• That the synchronization is lost after initial synchronization when a burst error insertion is present 

• That the error count overflow output bit is asserted when the error counter overflows and that it is 

deasserted when there is no overflow 
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The following table contains all of the error messages and their possible causes. 

 

ERROR Message Reason Manual Checks 

ERROR - initial 

synchronization did not 

occur as expected 

The initial synchronization did 

not occur within the specified 

time frame. 

Verify whether synchronization ever 

occurred and if not determine why.  If it 

did determine if the expected time frame 

for it to occur was accurate 

ERROR - errors counted 

did not match errors 

inserted 

When a burst error was not 

present, the number of errors 

counted did not match the number 

inserted. 

If the number of errors inserted was 

enough to cause a loss of 

synchronization, this error may occur in 

which case a manual check would be 

required.  Another possible cause is an 

error count register size that is too small 

to count the number of errors inserted 

causing the counter to overflow. 

ERROR - too few errors 

counted with burst error 

present 

When a burst error was present, 

the number of errors counted was 

not larger than the number of 

single errors inserted. 

Check to make sure the error counter did 

not overflow. 

ERROR - test did not stop 

at max word count 

The test did not complete in the 

expected amount of time 

Check where the word_cnt signal is it 

and if it is incrementing.  If so, then it 

may just be that with the setup 

parameters, the test is taking longer than 

expected.  Try increasing the value of 

TEST_TIMEOUT. 

ERROR - Expected loss 

of sync, but it did not 

occur 

The error burst did not cause a 

loss of sync. 

It is possible that the error burst lined up 

with the synchronization checking state 

machine such that not enough errors 

were detected to cause a loss of 

synchronization.  Try changing 

DELAY_TO_BURST_ERROR 

constant. 

ERROR - Did not get 

expected 

err_cnt_overflow 

indication 

The error counter overflowed but 

the overflow output bit was not 

asserted 

There’s no valid reason to see this error 

so a design error is implied 

ERROR - Got unexpected 

err_cnt_overflow 

indication 

The overflow output bit was 

asserted but the error counter did 

not overflow 

There no valid reason to see this error so 

a design error is implied 
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