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ABSTRACT 

In April of 2010, control of cable communications satellite Galaxy 15 was lost.  The 

satellite remained uncontrolled, drifting in free orbit, for over nine months before control 

was resumed.  During its drift, Galaxy 15 continued to transmit position data.  These drift 

position data offer a unique opportunity to investigate the forces in the geostationary orbit 

regime.  The purpose of the project that is described in this report was to compare the 

empirical data from Galaxy 15’s uncontrolled period with a high-fidelity geosynchronous 

orbit dynamic model.  The dynamic model was constructed with Matlab ®, and was 

verified by use of the satellite’s ephemerides over a full month of propagation data.  The 

model was then run for each perturbation force, simulated separately, in order to find the 

specific effects of each perturbation force.  The project report contains an analysis of the 

forces, and a conclusion concerning how each force affects the orbit regime.  Each force 

examined is found to have a large effect in at least one classical direction. 
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NOMENCLATURE 

Symbols 

A – Ideal geosynchronous radius, 42,164,200 meters 

As – The surface area of the satellite 

a – Semi-major axis 

𝑎⃑ – Perturbing acceleration vector 

ah – Disturbing acceleration in satellite body-fixed out-of-plane direction 

ar – Disturbing acceleration in satellite body-fixed radial direction 

𝑎⃑𝑠𝑟 – Acceleration due to solar radiation pressure 

aϕ – Disturbing acceleration in satellite body-fixed tangential direction 

Δ𝑎̅ – Normalized semi-major axis offset, also known as the Longitudinal drift rate 

C – Computed gravitational harmonic coefficient 

cR – The reflectivity of the spacecraft surface facing the sun 

𝑒 – Eccentricity vector, made up of X, Y, and Z components 

𝑒𝑥 – X direction eccentricity variable 

𝑒𝑦 – Y direction eccentricity variable 

𝐹⃑ – Force vector 

G – The Greenwich Meridian 

h – Angular momentum 

ℎ̂ – North in LVLH frame 

𝑖 – Inclination vector, made up of X, Y, and Z components 

𝑖𝑥 – X direction inclination variable 

𝑖̂x – Unit vector along X direction 
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𝑖𝑦 – Y direction inclination variable 

𝑖̂y – Unit vector along Y direction 

𝑖̂z – Unit vector along Z direction 

𝐼 – Vector pointing from Earth center to Greenwich Meridian in ECEF reference frame 

𝐽 – Vector pointing from Earth center to 90º East of Greenwich Meridian in ECEF frame 

𝐾̂ – Vector pointing from Earth center to north in ECEF frame 

m – Mass of satellite 

n⃑⃑ – Vector pointing from orbit center to the ascending node 

N – Nutation matrix 

p – The semilatus rectum 

P – Legendre polynomial 

P – Precession matrix 

psr – The average pressure from the Sun at 1 AU 

r – Radial distance of orbit, measured from Earth center 

r⃑ – Position vector of satellite relative to Earth center 

𝑟𝐸𝐶𝐸𝐹 – Vector to the object of interest in the ECEF frame 

𝑟𝐸𝐶𝐼 – Vector to the object of interest in the ECI frame 

𝑟𝐺𝐶𝑅𝐹 – Vector to the object of interest in the geocentric reference frame 

𝑟𝐼𝑇𝑅𝐹 – Vector to the object of interest in the international terrestrial reference frame 

𝑟𝐿𝑉𝐿𝐻 – Vector to the object of interest in the LVLH frame 

R – The Earth’s mean equatorial radius, roughly 6,378,100 meters 

R – Sidereal rotation matrix 

s – Sidereal angle 
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S – Computed gravitational harmonic coefficient 

t – Time 

U – Gravity potential 

V – Velocity magnitude 

𝑉⃑⃑ – Velocity vector 

𝑉𝑡 – Velocity component in tangential direction 

𝑉𝑟 – Velocity component in radial direction 

𝑉𝑜 – Velocity component in orthogonal direction 

W – Polar motion matrix 

X – Inertial coordinate direction pointing towards the vernal equinox 

x – Variable distance along 𝑖̂x unit vector 

Y – Inertial coordinate direction orthogonal to X in the equatorial plane 

y – Variable distance along 𝑖̂y unit vector 

Z – Inertial coordinate direction orthogonal to X and Y, representing North 

z – Variable distance along 𝑖̂z unit vector 

ε – The reflectivity coefficient of the spacecraft surface 

λ – Geocentric longitude 

μ – Gravitational parameter 

ν – True anomaly 

ξ – Specific mechanical energy 

Π – Legendre polynomial normalizing function 

σ – The effective cross-sectional area to mass ratio 

φ – Uniform angular velocity 
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ϕ – Geocentric latitude 

Ω – Right ascension of the ascending node 

ω – Argument of perigee 

ωE – Rotational angular velocity of the Earth 

 

Abbreviations 

COE – Classical Orbital Elements 

ECEF – Earth-Centered Earth-Fixed reference frame 

ECI – Earth-Centered Inertial reference frame 

GEO – Geostationary Orbit or Geosynchronous Orbit 

GPS – Global Position System 

LEO – Low Earth Orbit 

LVLH – Local Vertical Local Horizontal satellite reference frame 

WAAS – Wide Area Augmentation System 
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GLOSSARY 

Eccentricity – Measure of how circular an orbit is.  An eccentricity of zero is perfectly 

circular, of one is parabolic, and of greater than one is hyperbolic. 

Ecliptic plane – Plane in which Earth orbits the Sun. 

Ephemerides – Position and velocity coordinates for celestial bodies. 

Equatorial plane – Plane coincident with Earth’s equator. 

Geostationary Orbit – A geosynchronous orbit in the equatorial plane that stays above 

the same point on the Earth for its full orbit. 

Geosynchronous Orbit – An orbit around Earth that matches the revolution period of 

Earth. 

Inclination – Angular difference between the orbit plane and the equatorial plane. 

Mean Equatorial Geocentric System of Date (MEGSD) Coordinate System – A nearly 

inertial coordinate system from the point of view of the non-rotating center of the Earth 

in the orbit plane of the satellite.  The Earth revolves around this center, and the distance 

to the satellite is measured from the mean sea level.  This coordinate system differs from 

an inertial one by not including the precession or nutation effects of the Earth in order to 

vastly simplify the calculations with minimal loss of coherence. 

Non-Spherical Harmonics – Model of the gravitational pull of the Earth due to its non-

spherical nature. 

Spacecraft-oriented Coordinate System – A non-inertial coordinate system that uses the 

spacecraft center of mass as the central point.  This relates the directions of motion of the 

spacecraft to the directions of the Earth as given in MEGSD. 

Subscripts 1 and 2 refer to the Sun and the Moon, respectively. 
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INTRODUCTION 

 This Master of Science in Engineering Capstone project seeks to assess 

theoretical geosynchronous (GEO) satellite orbital drift compared to the empirical orbital 

data obtained from Galaxy 15’s uncontrolled period.  Galaxy 15’s unique history allows 

the chance to validate GEO long-period orbit propagations with high-accuracy empirical 

data of an uncontrolled object.  Satellites in GEO all have specific mission parameters, 

and therefore, they need to hold position with high accuracy.  Thus, no high-fidelity data 

have been previously analyzed with respect to long periods of uncontrolled satellite 

movement at this particular orbit, as previously no such data existed. 

 High-fidelity empirical ephemeris of the satellite path as it drifted is available due 

to the data generated by the Wide Area Augmentation System (WAAS) data systems on 

board and in use on the Galaxy 15 satellite.  These data can be used to create a very 

accurate picture of specifically where the satellite was at any point in time over its nearly 

nine-month drift.  Modeling a satellite in GEO includes the development of highly 

accurate models of the gravitation wells of the Earth, Moon, and Sun, as well as an 

accurate account for the solar pressure acting on the satellite’s surface [1].  The solar 

pressure component requires an accurate model of the satellite as well as accurate attitude 

data from the satellite [1].  However, attitude data are not publicly available, and the 

satellite itself is quite complex to properly model.  To solve these problems, assumptions 

concerning the attitude and shape of the satellite were used in this project in order to 

approximate the forces, so that the focus could be placed on the novel method of 

examining the forces.   
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Background 

 Today, thousands of known satellites encircle the globe, many of which send 

communications data from one point to another on this planet, with a few sending and 

receiving signals outwards [2].  All of these satellites have specific orbit paths to ensure 

proper connections and to minimize interference between connections and other 

satellites.  Of these communication satellite orbits, by far the most popular is the 

geosynchronous orbit, or the orbit which allows a satellite to be sitting over a specific 

equatorial longitude as long as it maintains this orbit [3].  This means the satellite must be 

moving at the same angular velocity of the surface of the Earth.  As orbiting body speeds 

are determined primarily by the radius of the orbit, geosynchronous orbits are all at the 

same mean radius.  This simplification ignores the eccentricity of the orbit, and assumes 

the orbit is nearly perfectly circular.  Finally, the only way to keep a satellite fixed 

relative to a point on the Earth’s surface, is to keep it at the equator.  Holding the orbit at 

the equator makes the geosynchronous orbit very nearly geostationary, as the satellite 

will remain almost stationary relative to the Earth.  With all of these limitations, the only 

variable these geostationary satellites have any control over is their longitude.  Each 

satellite in geostationary orbit approximately sits in a line of other satellites moving at the 

same speed in the same direction about 35,800 km above the equator [3]. 

 In order to maintain a geosynchronous orbit, small adjustment maneuvers are 

required.  Perturbations from the orbit can be caused by gravitational forces from the Sun, 

the Moon, and other celestial bodies, or from solar radiation off of the Sun, or even from 

solar wind caught in the satellite’s solar panels [1].  Other sources of perturbative forces 
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include Earth’s magnetic field and the non-homogenous (non-spherical) nature of the 

Earth’s mass, which affects the Earth’s gravitation.  All of these perturbations can throw 

the satellites off of their orbits.  These orbits, tracked from the ground and maintained 

through several different tracking and sensing mechanisms, need to utilize the data 

obtained to counteract the perturbations to keep the satellites near their ideal orbits.  

Additionally, the satellites must constantly be pointed in the proper direction to maintain 

data communications, as well as to keep the solar panels pointed towards the Sun, 

throughout the orbits.  This requires a complex set of reaction wheels, moment wheels, 

mass expulsion devices (rockets), and other control systems to keep the satellites orbiting 

properly and pointed in the proper directions.  These further require accelerometers, star 

trackers, and other sensors in order for the satellites to find what attitude corrections are 

necessary.  Finally, all of these systems require power.  Power is usually generated from 

solar panels, with some amount of battery storage onboard. 

 Most satellites employ onboard computers, which keep track of all of the attitude 

information, and transmit it all to a ground control station, which keeps track of all the 

satellites and ensures, among other things, that none of the satellites are about to collide.  

Additionally, some ground stations track the satellites themselves, using radar or optical 

systems to verify position [4].  Figures 1 and 2 display common coordinate systems, 

which track the satellite relative to the Earth-oriented or the satellite-oriented coordinate 

systems, respectively [1], and which will be used in this particular study.  The Mean 

Equatorial Geocentric System of Date (MEGSD) coordinate system tracks both the 

satellite moving around the Earth and the rotation of the Earth.  The Greenwich angle, G, 

tracks the sidereal angle of the Greenwich Meridian, or the 0o longitude on Earth.  λ is the 
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longitudinal angle from the Greenwich Meridian to the spacecraft, and the sidereal angle 

s is the combination of the two from the semi-inertial reference.  ωE is the rotational 

angular velocity at which the Earth rotates, r is the radius at which the satellite orbits, and 

V is the tangential velocity of the spacecraft.  Here, X and Y are directions in the 

equatorial orbit plane that are orthogonal to each other and represent a snapshot of 

directions for the rotation of the Earth; the X-axis points towards the vernal equinox. 

 

 

Figure 1: The MEGSD Coordinate System [1].   

 

The three reference frames used throughout this project are depicted in Figure 2.  

The ECEF frame, made up of directions I, J, and K, is rotated from the ECI frame by 

Greenwich angle G. The spacecraft-oriented coordinate system in Figure 2, known as the 
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Local-Vertical Local-Horizontal (LVLH) frame, uses the same I axis as the ECEF system 

– corrected by λ to define the longitude, but is translated out to the radius of the satellite.  

Here, ϕ is tangential (east for a satellite in GEO), and the radial (r) direction is outward 

from the Earth.  All three coordinate systems share the same direction for North – with 

ECI and ECEF frames utilizing the same axis (seen as Z, K), whereas the North axis for 

the satellite LVLH frame is translated out to the satellite.  The depiction in Figure 2 is the 

ideal case for a perfectly geostationary satellite.  

 

Figure 2: The Earth and Spacecraft Reference Frames. 

 

 In April 2010, a cable communications satellite known as Galaxy 15 stopped 

receiving inputs to its onboard orbit correction systems.  Over a period of nine months, 

the satellite gradually drifted until the solar panels pointed away from the Sun long 

enough to drain the battery and reset the onboard computers [5].  After the reset, the 

satellite once again started receiving inputs from ground control and was able to correct 

its orbit and attitude to resume use as a cable satellite.  This failure and restart, not 

incomparable to rebooting a problem computer, is why Galaxy 15 is considered a 

“zombie” satellite.  Galaxy 15 is a verified occurrence of a zombie satellite, a term 

reserved for satellites that have drifted or ended their missions, and then reinstated at a 
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later date [6].  During its zombie state, Galaxy 15 was not under the control of ground 

stations; in fact, the satellite simply drifted.  The satellite trajectory was dictated by 

astrodynamic forces alone, including solar, lunar, and Earth’s gravitation forces, instead 

of ground control. 

 The final point of interest in this particular satellite comes from its onboard Wide 

Angle Augmentation System (WAAS).  To improve the positioning information of 

satellites, the U.S. Military has been working on the WAAS since 1994 [7].  This system 

measures GPS coordinates between multiple satellites and their locations against each 

other, and corrects these coordinates by finding and eliminating errors [7].  This 

positioning system is implemented on Galaxy 15, and was transmitting position data from 

the satellite as it drifted unresponsive to ground control.  While the onboard controls were 

unresponsive, the WAAS continued to output the satellite’s position and velocity 

ephemerides as it drifted around the Earth.  Using up the battery as the satellite lost 

power, the data transmission stopped for a period of about five weeks, but the rest of the 

drift data can be used to model and determine the significant forces on a satellite as it is 

free from ground control corrections.  These drift data can then be compared to models 

featuring the theoretical perturbations from all the considered forces that act on a satellite.  

As a majority of the satellite-specific forces are small, with solar pressure being the only 

considered force concerned about the spacecraft shape [1], this analysis can be applied to 

other satellites in the same orbit regime with similar attitude characteristics, or modified 

to account for attitude differences. 
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Review of Literature 

Geosynchronous Force Models 

 Models concerning the operative forces at or near GEO come from extending 

analyses from other observations.  The Newtonian point-mass gravitational forces are 

calculated based on the known distances and masses from the original gravitational 

equations.  However, the elliptic nature of Earth’s gravitational field must be accounted 

for [8], and the non-spherical harmonics are so powerful they need to be modeled at least 

to the eighth degree.  Additionally, solar pressure has been found to have a large effect on 

satellites [9], and solar wind could have an effect during a geomagnetic storm [10], but is 

negligible in normal conditions [1].  However, it has also been shown that only the major 

gravitational forces really have an effect on perturbations [11] – for instance, a satellite in 

GEO is barely affected by Jupiter’s moon Ganymede.  Studies looking at uncontrolled 

objects in GEO often use these baseline concepts, such as the investigation by Aslanov et 

al. [12]. 

 

Geosynchronous Satellite Modeling 

 Plenty of models exist for modeling satellites in orbit, and the geosynchronous 

orbit is a dynamically complex and highly-populated orbit, meaning many studies have 

already been generated for this particular orbit.  A simple classroom model, which 

demonstrates the fundamental characteristics, is used to teach the basics of geostationary 

orbit, and is immediately available online [13].  More complex models are generally for 

specific operational purposes, and others can be found for simple instructional purposes.  

Other, far more precise models, are used in the orbit estimation and correction of the 
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actual satellites [14].  While the simpler models are easy to obtain, they do not feature the 

accuracy required for this capstone project.  The most complex models are not readily 

acquired, and thus are not practical for this purpose.  Thus, in the fulfillment of this work 

a high-fidelity model has been generated.  None of these previous models have been used 

to publish information on the drift portion of Galaxy 15’s lifetime. 

 

Galaxy 15 

 Articles contemporary with the event show that control of Galaxy 15 was lost as a 

result of an energetic particle injection and acceleration during a magnetic storm [15].  

Additionally, the recovery of the satellite was managed after the batteries were drained 

and the satellite was rebooted, when the operators began to slowly retake control of the 

satellite [16].    Few articles exist showing the actual path the satellite took, aside from 

articles that describe the concern that there would be data transmission disruption 

between Galaxy 15 and AMC 11, or that the customers serviced by Galaxy 15 were 

switched to Galaxy 12 until control was regained of the rogue satellite [17].  Finally, 

Shallberg, Potter, and Class indicate that Galaxy 15 “orbited from its assigned orbital 

location of 133W to 97W” over the nine-month period in their article concerning WAAS 

refinement [18].  
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PROJECT DESCRIPTION 

In this project, a simple point-mass spacecraft was modeled, and put into a 

dynamic system focusing on geosynchronous orbit about the Earth’s gravity field.  Using 

a point approximation for the acceleration on the satellite due to Earth’s gravity, a 

relatively simple orbit path can be generated.  This original orbit is the perturbation-free 

model that the satellite would follow if the Earth was truly a point mass and no other 

perturbations existed.  Data from the satellite already show it is not this simple: further 

perturbation movements, including the Moon’s gravity field, the Sun’s gravity field, and 

solar pressure, were then added to the model.  The accelerations from these forces, 

specifically, were used to model the acceleration of the satellite.  The trajectory was then 

integrated out of the acceleration by finding the position and velocity for a finite number 

of points.  Finally, this orbit was compared with the actual drift orbit of Galaxy 15, 

accurate to about 1 meter per axis, to quantify whether the drift differs greatly from the 

theoretical model.  Galaxy 15 ephemerides consist of actual position and velocity data, so 

a comparison at this point was feasible, but as the satellite inevitably drifts in multiple 

dimensions, the comparison was still not a simple task.  The modeling in this project was 

done in the mathematical matrix laboratory Matlab ®, as it is ideal for large iterations of 

differential equations – such as those necessary to track the orbits and gravity fields of a 

satellite.  Matlab ®’s interior program, ODE45 (Ordinary Differential Equation solver 

based on the Runge-Kutta 4,5 method), was also heavily utilized in this project to 

perform the numerical integrations necessary to find the velocity and position changes 

from the acceleration. 

 



23 

 

Justification 

 Humans have been launching satellites into orbit around the Earth since Sputnik 

in 1957.  That is over a half century of time in space, and in this half century, thousands 

of different satellites, probes, and other spacecraft have been sent out into space [19].   

 To date, over 450 satellites have been launched into geostationary orbit [20], as 

displayed in Figure 3.  These satellites range from military, to commercial, to 

governmental projects, and they all need orbit corrections throughout their mission 

durations.  This specific orbit, GEO, has actually grown crowded over the past few 

decades, and satellites at the ends of their missions have had to reserve fuel to move to 

‘graveyards’ outside of geosynchronous orbit [1].  Additionally, this is perhaps the 

conceptually simplest orbit area to study, as ideally the spacecraft’s longitude is constant, 

and the latitude should always be near 0o, or along the equator.  As this particular satellite 

– Galaxy 15 – is the only satellite to drift freely for months while sending out precision 

position data, its orbit is the only one that can be studied in this way. 

 

 

Figure 3: Satellites Launched into Geostationary Orbit [20]. 
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Orbital Dynamics 

 Many satellites pointed towards Earth follow a geosynchronous orbit.  This orbit 

is at the radius necessary to orbit the Earth at the same speed the Earth revolves, and is in 

the equatorial plane, so the satellite is really above the same portion of Earth at all times.  

This is just a simplification, as perturbative forces will cause the satellites to drift around 

their designated locations; however, it is a good starting point. 

 Soop [1] presents that, taken as a point mass, the force due to the gravitation field 

around Earth follows from Newton’s laws as 

𝐹⃑ = −
𝑚𝜇

𝑟3 𝑟 .      (1) 

In order to maintain a circular orbit, the velocity must determine the radius, or the radius 

determines the velocity.  Thus, for a relative angular velocity of zero with the Earth – to 

provide for geosynchronous orbit – the radius r is dependent on the gravitational constant 

μ.  Thus, this equation can be solved [1] to find the ideal radius, A, for the velocity to be 

one revolution per day per: 

𝐴 = √
𝜇

ωE
2

3
= 42164.2 𝑘𝑚.     (2) 

This distance is measured from the point-mass assumed as the center of the Earth and the 

center of its gravity.  Any satellite operating in GEO will have a mean radius of A; 

however, eccentric orbits are common, and the actual radius for a satellite is rarely 

actually the value calculated in Equation (2) [1]. 

 In a three-dimensional world, position is given at three dimensions.  With the 

radius, or the distance to the center of the Earth already given, one is eliminated.  Next, in 

order to be truly geostationary, the satellite must lie along the same plane as Earth’s 

equator, or the Equatorial Plane.  Thus, two of the three dimensions are given.  The final 
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dimension is the longitude, or at which angular location around the Earth the satellite will 

remain.  This dimension is the only dimension of freedom the satellite operator actually 

has when considering position. 

 With three-dimensional positions come three-dimensional velocities.  In the 

standard coordinate system for the satellite, tangential (forward), radial (outward), and 

orthogonal (North), the velocity equations [1], relative to a rotating Earth, become 

𝑉𝑡 = 𝑉(𝐷 + 2𝑒𝑥 cos 𝑠 + 2𝑒𝑦 sin 𝑠),    (3) 

𝑉𝑟 = 𝑉(𝑒𝑥 sin 𝑠 − 𝑒𝑦 cos 𝑠), 

and    𝑉𝑜 = 𝑉(𝑖𝑥 sin 𝑠 − 𝑖𝑦 cos 𝑠). 

Here, 𝑒̅ is the eccentricity vector, and 𝑖 ̅is the inclination vector.  To change to the inertial 

system, the rotational velocity at the ideal geosynchronous position must be added to the 

tangential velocity to account for the rotating reference frame.  Translation into MEGSD 

is just a rotation around the north (orthogonal, or z) axis by -s, adding the sidereal 

component in. 

 Using the vectors presented in Equation (3) gives a complex image of what is 

happening to the satellite, and is not easy to visualize.  Instead, the position and velocity 

data are used to calculate the Classical Orbital Elements (COE), with Equations (4) 

through (19). 

 The complex nature of the forces acting on the satellite necessitate the utilization 

of multiple reference frames to accurately depict the acceleration of the spacecraft.  

Rotations between the ECEF and the ECI frames are generally found through the rotation 

in Equation (4) [21]: 

𝑟𝐺𝐶𝑅𝐹 = [𝑷(𝑡)][𝑵(𝑡)][𝑹(𝑡)][𝑾(𝑡)]𝑟𝐼𝑇𝑅𝐹.    (4) 
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Here, 𝑟𝐺𝐶𝑅𝐹 is the vector to the object of interest in the inertial Geocentric reference 

frame, 𝑟𝐼𝑇𝑅𝐹is the vector in the International Terrestrial reference frame, P is the 

precession matrix, N is the nutation matrix, R is the sidereal-rotation matrix, and W is the 

polar motion matrix.  As this study is on a geosynchronous orbit, precession, nutation, 

and polar motion will be neglected.  The rotation matrix used in this study and shown in 

Equation (5) represents just the sidereal rotation: 

𝑟𝑒𝑐𝑖 = [
cos (𝐺) −sin (𝐺) 0

sin (𝐺) cos (𝐺) 0
0 0 1

] 𝑟𝑒𝑐𝑒𝑓 .          (5) 

 Additional translations are necessary to go into the satellite Local Vertical Local 

Horizontal (LVLH) frame, also known as the Satellite Coordinate System.  This is the 

most straightforward coordinate system to model the accelerations on the spacecraft.  In 

this project, accelerations are determined in their more convenient reference frames, and 

then translated and rotated into the LVLH frame for determination of how the forces 

affect the satellite.  For this translation, from ECI to LVLH, three unit vectors are created 

from the inertial position and velocity data of the satellite, per Equation (6) [21]: 

𝑟𝑒𝑐𝑖 = [
𝑟

|𝑟|
,

𝑟×𝑣⃑⃑

|𝑟×𝑣⃑⃑|
×

𝑟

|𝑟|
,

𝑟×𝑣⃑⃑

|𝑟×𝑣⃑⃑|
] 𝑟𝐿𝑉𝐿𝐻.    (6) 

However, using the position and velocity information is not very conducive to visualizing 

the actual orbit propagation.  Instead, the COE’s, such as longitude and inclination, will 

be utilized to properly understand how the satellite moved. To generate the COE, the 

position and velocity vectors must first be defined, from Equations (7) and (8) [21]: 

𝑟 = 𝑥𝑖̂𝑥 + 𝑦𝑖̂𝑦 + 𝑧𝑖̂𝑧      (7) 

and 

𝑉⃑⃑ = 𝑑𝑥𝑖̂𝑥 + 𝑑𝑦𝑖̂𝑦 + 𝑑𝑧𝑖̂𝑧.        (8) 
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Next, the angular momentum vector can be found by crossing the position and velocity, 

as Equation (9) shows: 

ℎ⃑⃑ = 𝑟×𝑉⃑⃑.         (9) 

From this equation, the vector pointing to the ascending node is found through Equation 

(10): 

𝑛⃑⃑ = 𝑖̂𝑧×ℎ⃑⃑.      (10) 

Now, from these variables, the eccentricity vector can be found through the complicated 

Equation (11): 

𝑒 =
(𝑉2−

𝜇

𝑟
)𝑟−(𝑟∙𝑉⃑⃑⃑)𝑟

𝜇
.      (11) 

The eccentricity found in Equation (11) is one of the major identifying elements for the 

orbit, and this vector is used to represent how the orbit of Galaxy 15 changed.  Another 

important element, the Semi-Major Axis, can be found through the use of specific 

mechanical energy, which is given in Equation (12): 

𝜉 =
𝑉2

2
−

𝜇

𝑟
.          (12) 

Now, the semi-major axis is found through Equation (13): 

𝑎 = − 
𝜇

2𝜉
.         (13) 

This can then be normalized to the semi-major axis offset from nominal by means of 

Equation (14) [21]: 

∆𝑎̅ =
𝑎−𝐴

𝐴
.          (14) 

Other important orbital elements include the inclination, found through Equation 

(15), the right ascension of the ascending node from Equation (16), the argument of 
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perigee from Equation (17), the true anomaly through Equation (18), and finally, the 

longitude through Equation (19): 

𝑖 = cos−1 𝑖̂𝑧∙ℎ⃑⃑⃑

|𝑖̂𝑧̂||ℎ⃑⃑⃑|
,        (15) 

Ω = cos−1 𝑖̂𝑦̂∙𝑛⃑⃑

|𝑛⃑⃑|
,       (16) 

𝜔 = cos−1 𝑛⃑⃑∙𝑒

|𝑛⃑⃑||𝑒|
,       (17) 

𝜐 = cos−1 𝑒∙𝑟

|𝑒||𝑟|
,       (18) 

and 

𝜆 = cos−1 𝑖̂𝑦∙𝑟

|𝑟|
.        (19) 

 

 

Satellite Perturbations 

 Until now, the only force on the satellite considered is due to Earth’s point mass 

gravity.  As indicated before, this is a simplification.  The Sun also has a realizable 

gravitation pull, as does the Moon, and even the ellipsoidal non-homogeneous nature of 

the Earth!  The Sun also emits solar radiation pressure on the effective Sun-oriented 

surface area of the craft.  As the craft changes orientation, the effective surface area will 

change.  Additionally, Earth is tilted to the ecliptic plane, so the equator does not line up 

with the ecliptic, meaning the Sun will also have a slight northward and southward pull 

on the satellite each year, and the Moon is even further out-of-plane, and also provides an 

acceleration based on its orbit.  Figure 4 displays a very simplified image of the relevant 

perturbative forces acting on a satellite. 
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Figure 4: Satellite Gravitational Perturbation Forces [22]. 

 

 In actuality, each and every celestial body has a gravitational impact on every 

other celestial body [23].  However, down to a point, this impact becomes negligible.  For 

instance, of all celestial bodies outside the Earth, Sun, and Moon, Venus has the largest 

gravitational impact on satellites in Earth’s geosynchronous orbit, but even Venus’ effect 

is so small it is considered negligible for a full year’s orbit – Venus’ pull is, at a 

maximum, five orders of magnitude smaller than the Sun’s [1].  Several other forces of 

even smaller magnitude are also neglected, as they have a relatively tiny impact on the 

station-keeping of a satellite.  However, these small gravitational forces move the satellite 

outside of its ideal position. 

 Each of the perturbing forces provide an acceleration on the satellite.  These 

accelerations can all be added together to find the full acceleration of the satellite at any 

point in time.  These accelerations are then implemented into the satellite’s accelerations 

with the series of Equations (20) through (25) given by Tombasco [24]: 



30 

 

𝜆̇ =
ℎ

𝑟2 +
𝑟

ℎ
tan (

𝑖

2
) sin(𝑤 + 𝑣) 𝑎ℎ − 𝜔𝑒,    (20) 

Δ𝑎̇ =
2𝐴(Δ𝑎̅+1)2

ℎ
[(𝑒𝑥 sin(𝑠) − 𝑒𝑦 cos(𝑠))𝑎𝑟 +

𝑝

𝑟
𝑎𝜙],          (21) 

𝑒̇𝑥 =
𝑟

ℎ
{

𝑝

𝑟
sin(𝑠) 𝑎𝑟 + [𝑒𝑥 + (1 +

𝑝

𝑟
) cos(𝑠)] 𝑎𝜙} + 𝑒𝑦

𝑟

ℎ
{[tan (

𝑖

2
) sin(Ω) cos(𝑠) −

tan (
𝑖

2
) sin(s) cos(Ω)] 𝑎ℎ},   (22) 

𝑒̇𝑦 =
𝑟

ℎ
{

−𝑝

𝑟
cos(𝑠) 𝑎𝑟 + [𝑒𝑦 + (1 +

𝑝

𝑟
) sin(𝑠)] 𝑎𝜙} − 𝑒𝑥

𝑟

ℎ
{[tan (

𝑖

2
) sin(Ω) cos(𝑠) −

tan (
𝑖

2
) sin(s) cos(Ω)] 𝑎ℎ},            (23) 

𝑖̇̇𝑥 = [
𝑟

ℎ
sin(Ω) cos(ω + v) +

𝑖𝑟

ℎ sin(i)
cos(Ω) sin(ω + v)] 𝑎ℎ,  (24) 

𝑖̇̇𝑦 = [
𝑖𝑟

ℎ sin(i)
sin(Ω) sin(ω + v) −

𝑟

ℎ
cos(Ω) cos(ω + v)] 𝑎ℎ.  (25) 

Here, the acceleration vector 𝑎⃑ = [𝑎𝑟 , 𝑎𝜙, 𝑎ℎ]. 

 

Gravitation of Earth 

 The ellipsoidal non-homogeneous nature of the Earth provides an acceleration 

gradient that forces near satellites to accelerate in a different way than if the Earth were a 

mere point-mass.  In GEO, this gradient provides a slight north or south (the opposite of 

whether the satellite is north or south of the equator) acceleration of about 2.95 x 10-9 

m/s2, and a slight inward acceleration of about 8.33 x 10-6 m/s2 [1].  This acceleration 

requires a periodic eastward burn to correct, as well as periodic north or southward burns.  

These burns result in a parabolic-shaped libration about the mean position, and actually 

increase the effective geosynchronous radius by about one-half kilometer [1]. 

 In order to accurately model the Earth’s full gravitational acceleration on the 

satellite, the coordinates of the satellite need to be rotated to the ECEF frame from the 
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ECI frame through Equation (5).  From here, a complex set of equations relying on 

longitude, already calculated in λ, the radius r, and the latitude ϕ, can be calculated from 

Equation (26): 

tan 𝜙 =
𝑟𝐸𝐶𝐸𝐹(3)

√𝑟𝐸𝐶𝐸𝐹(1)2+𝑟𝐸𝐶𝐸𝐹(2)2
.    (26) 

From here, the non-spherical gravitation about the Earth can be found through the 

following three derivatives [21]: 

𝜕𝑈

𝜕𝑟
= −

𝜇

𝑟2
∑ ∑ (

𝑅

𝑟
)

𝑙
𝑙
𝑚=0 (𝑙 + 1)∞

𝑙=2 𝑃𝑙,𝑚[sin 𝜙](𝐶𝑙,𝑚 cos(𝑚𝜆) + 𝑆𝑙,𝑚 sin(𝑚𝜆)),  (27) 

𝜕𝑈

𝜕𝜙
=

𝜇

𝑟
∑ ∑ (

𝑅

𝑟
)

𝑙
𝑙
𝑚=0 (𝑃𝑙,𝑚+1[sin 𝜙] − 𝑚 tan 𝜙 𝑃𝑙,𝑚[sin 𝜙])(𝐶𝑙,𝑚 cos(𝑚𝜆) +∞

𝑙=2

𝑆𝑙,𝑚 sin(𝑚𝜆)),       (28) 

and 
𝜕𝑈

𝜕𝜆
=

𝜇

𝑟
∑ ∑ (

𝑅

𝑟
)

𝑙
𝑙
𝑚=0 𝑚𝑃𝑙,𝑚[sin 𝜙](𝑆𝑙,𝑚 cos(𝑚𝜆) − 𝐶𝑙,𝑚 sin(𝑚𝜆))∞

𝑙=2 .       (29) 

These equations utilize the mean equatorial radius of Earth, R, the distance from Earth to 

the satellite, r, the computed gravitational harmonic components S and C, found online at 

the NASA and German Space Agency (DLR) GRACE website presented by the 

University of Texas [25], and the Legendre polynomials P as a function of the sine of ϕ, 

as presented in Appendix A – normalized with Equations (30) and (31): 

Π𝑙,𝑚 = √
(𝑙+𝑚)!

(𝑙−𝑚)!𝑘(2𝑙+1)
     (30) 

and     𝑃̅𝑙,𝑚 =
𝑃𝑙,𝑚

Π𝑙,𝑚
.             (31) 

The further out the first sum is taken, the more accurate the model will be.  In reality, 

however, for GEO objects, the model only needs to go out to 8 or so sums to have an 

accurate model of the orbit path, and in this study, the summation was capped at 8 sums.  

Once these derivatives are found, they can be combined into the accelerations in the 
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satellite reference frame, I, J, and K directions within the ECEF frame, using Equations 

(32) through (34) [21]: 

𝑎𝐼 = (
1

𝑟

𝜕𝑈

𝜕𝑟
−

𝑟𝐾

𝑟2√𝑟𝐼
2+𝑟𝐽

2

𝜕𝑈

𝜕𝜙
) 𝑟𝐼 − (

1

𝑟𝐼
2+𝑟𝐽

2

𝜕𝑈

𝜕𝜆
) 𝑟𝐽,   (32) 

𝑎𝐽 = (
1

𝑟

𝜕𝑈

𝜕𝑟
−

𝑟𝐾

𝑟2√𝑟𝐼
2+𝑟𝐽

2

𝜕𝑈

𝜕𝜙
) 𝑟𝐽 + (

1

𝑟𝐼
2+𝑟𝐽

2

𝜕𝑈

𝜕𝜆
) 𝑟𝐼,   (33) 

and    𝑎𝐾 =
1

𝑟

𝜕𝑈

𝜕𝑟
𝑟𝐾 +

√𝑟𝐼
2+𝑟𝐽

2

𝑟2

𝜕𝑈

𝜕𝜙
.         (34) 

Once the accelerations are found in the ECEF frame, they need to be rotated back to the 

ECI frame by Equation (5) for the combination of the other perturbation accelerations. 

 

Solar and Lunar Gravity 

 The Sun and Moon provide for similar, yet complexly linked, gravitational effects 

on the satellite.  As the distances between the satellite and Sun and the satellite and Moon 

are not constant, they provide sinusoidal accelerations.  As they are both sinusoidal, over 

a long enough time-span, their respective effects nearly average out [1].  Another 

sinusoidal effect arises from the fact that the satellite will orbit on a plane inclined to the 

ecliptic plane.  This means that in addition to the effects that the Sun and Moon have on 

the satellite’s tangential motion, they will also cause the inclination vector to drift, as 

displayed in Figure 5.  Problems arise when the accelerations cause the satellites to drift 

far enough off course that they can no longer function properly, or need to be re-adjusted 

so as not to collide with any other orbiting bodies.  Using Equation (35), the gravitational 
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acceleration on the satellite from these sources can be found [1], employing the 

ephemerides published by the Jet Propulsion Laboratory (JPL): 

𝑑2𝑟̅

𝑑𝑡2 = −
𝜇

𝑟3 𝑟̅ + ∑ 𝜇𝑘 [
𝑟𝑘̅̅̅̅ −𝑟̅

|𝑟𝑘̅̅̅̅ −𝑟̅|3 −
𝑟𝑘̅̅̅̅

𝑟𝑘
3]2

𝑘=1 .    (35) 

Here, no subscript indicates Earth, a subscript of 1 indicates the Moon, and a subscript of 

2 indicates the Sun.  As this equation takes into account the gravitational pull of Earth 

alone, which has already been considered, the first term (before the summation) in 

Equation (35) should be replaced with zero (0). As the ephemerides provided are given 

once per day, a polynomial was fit to these ephemerides and the position vectors to the 

Sun and Moon were extrapolated for the full data. 

 

 

Figure 5: Torque Applied to Inclination Vector by the Sun [1]. 

 

The Moon’s orbit itself does not lie on the ecliptic, so it also experiences the same 

inclination drift from the Sun.  However, as the Sun will provide a positive acceleration 

northward for half of the year, and a negative acceleration northward for half of the year, 

the actual north-south drift averages out.  Yet, a torque is applied to the satellite, forcing 
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the actual inclination vector of the satellite to drift.  This drift gently pulls the satellite off 

of the equator.  For a short mission, this effect can generally be neglected, but these small 

torques need to be considered over a multi-year mission. 

Solar Radiation Pressure 

 Potentially the most complex to model, and the smallest non-negligible effect 

traditionally considered, solar radiation pressure comes from solar activity of the Sun [1].  

This radiation emits a mean pressure on everything facing it, thus putting a relatively 

constant force on the solar panels of the satellite.  Solar radiation only has a real effect on 

the eccentricity of the orbit, as the mean effect over a day should cancel in all other 

directions.  The acceleration due to the solar radiation pressure comes from Equation (36) 

[21]: 

𝑎⃑𝑠𝑟 = −
𝑝𝑠𝑟𝑐𝑅𝐴𝑠

𝑚

𝑟

|𝑟|
.         (36) 

In Equation (36), psr is the pressure from the Sun, estimated here at 4.56x10-6 N/m2 [21], 

cR is the reflectivity of the surface facing the sun ranging from 0 to 2, and As is the 

surface area of the satellite.  In this study, the reflectivity is assumed to be 1.35, a value 

similar to most solar panels [26].  The surface area is the most complex part of this 

equation.  In reality, the satellite slowly tumbled – however, the reaction wheels on board 

should have been keeping the satellite’s attitude mostly pointed at the Sun, but the only 

way to verify this is to either obtain attitude data or examine power data from Galaxy 15 

as it drifted.  An assumed value of 20 m2 is used here, similar to most GEO 

communication satellites [27].
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METHODS 

This project was completed in three phases.  The first phase centered on assessing 

the behavior experienced by Galaxy 15 as it drifted in the first month after control was 

lost.  The second phase focused on a force model construction at GEO, including several 

perturbation forces, and placed a model satellite in the force model to examine the 

behavior.  The final phase then entailed taking the actual trajectory from the first phase 

and comparing it to the predicted trajectory from the second phase.  From here, potential 

conclusions can be formed based on the differences noted, such as the direction of the 

difference between the two paths, indicating which force had the largest non-modeled 

effect, or whether the model was sufficient to examine all forces the satellite was 

subjected to. 

 

Orbital Evolution of Galaxy 15 

 The first phase of the project entailed the investigation of the actual trajectory 

carried out by Galaxy 15 in the first month after control was lost.  This trajectory was 

compared to the trajectory followed for a similar timespan and orbit when the satellite 

was under full control to clarify the full drift the satellite experienced.  This alone can 

give great insight into the orbital effects on the satellite, and can lead to conclusions 

about the relative forces causing the perturbations on the satellite itself. 

 

Force Model for Geosynchronous Orbit 

 The second project phase, focusing on the force model at GEO, began with 

construction of the model.  The force model starts with a simple dynamic system of the 
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Earth and Galaxy 15 in an idealized point mass GEO orbit.  From here, the perturbation 

effects outlined in the background were added in one by one, and the results verified 

against the actual trajectory of the satellite.  The last perturbation force, the solar 

pressure, needed to be simplified for this study.  Instead of using the actual spacecraft 

shape and attitude to determine the effective surface area to mass ratio needed for the 

calculation, a constant estimation was used – recognized as a ‘cannonball’ model.  This 

was necessitated by the lack of publicly available attitude data, and was achieved by 

assuming a spherical satellite shape, and using the circular surface area aimed towards the 

Sun as the surface for the pressure to act against.  This assumption is not accurate over 

the nearly 10-month period control was lost on the satellite, as eventually power was lost 

when the solar panels drifted out of orientation with the Sun.  However, for the first 

month, the tumble of the satellite attitude should have been low enough that the 

assumption is fairly accurate.  Additionally, the solar pressure present was assumed 

constant over this time period, as it would greatly simplify the problem, and would not 

diverge too much from reality. 

 These models were constructed in Matlab ® by utilizing the accelerations 

imparted on the satellite, and the relevant integrations were processed through the 

onboard ODE45 integration tool.  Results were plotted in Matlab ®, as well, and analyses 

were created from these models.  Instead of using a single thirty-day sequence, this model 

utilized six sets of five days, taking the last data point used in each day as the first in the 

next in order to fully propagate the model.  This was done as computer memory 

constraints were noted while attempting to run as one solid month. 
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Trajectory Comparison 

 The final phase of the project investigated the two trajectories found in the 

previous two phases, comparing them against each other.  As there are several underlying 

assumptions, it was not expected that the model would perfectly predict the drift of the 

satellite.  In fact, it was recognized that the solar pressure assumptions given in the force 

model description would likely cause some level of inaccuracy.  However, it was clear 

that the directions and magnitudes of the inaccuracies would show a significant amount 

of information.  If the magnitude of the difference is relatively small, this could mean the 

assumptions used were fairly accurate, and if they are large, then the assumptions are 

clearly inaccurate.  If the solar pressure assumptions are inaccurate, for instance, the 

difference between the actual and the expected eccentricity vector drifts should be 

relatively large.  Differences in other directions could also point to other conclusions 

about other forces. 
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RESULTS AND DISCUSSION 

 This section reviews the data gleaned from a comparison of the Galaxy 15 

uncontrolled path from May 2010 against its fully controlled path for the month of May 

in 2016.  These results serve as a baseline – to show how far the satellite moved, and how 

much from its standard position in the month after control was lost.  The control year of 

2016 was chosen as it is the closest to 2010, celestially, of the data available.  The Earth’s 

position with the Sun was off by roughly 0.5 days, and the Earth’s position differed by 

about 1.7 days, from the 2010 data [28].  Utilizing the WAAS data available online [29], 

the inertial position and velocity data, in the satellite’s x-y-z coordinates, can be 

extracted, and from here computed into the Earth-centric coordinate system into MEGSD 

orbital elements coordinates via a series of equations, including Equations (7) through 

(19) [21].  Please note that in both of these periods, gaps in the data exist, resulting in 

gaps over the presented timespan. 

Uncontrolled Flight Path of Galaxy 15 

 On April 5th, 2010, control of Galaxy 15 was lost as a result of an ion storm.  

Looking specifically into the data from May of that year, to avoid any of the transient 

effects of the storm and the loss of control, the actual drift of the satellite can be 

analyzed.  As previously mentioned, the most important variable for geosynchronous 

satellites is their longitude.  This is what really governs their Earth-relative locations, as 

the radius, inclination, and eccentricity all are pre-defined.  Yet, as control of this satellite 

was lost, other variables changed, and the changes in these other variables are also 

examined here. 
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In the following month, Galaxy 15 drifted from its starting location at 132.7 

degrees to 131.2 degrees at the end of May.  This 1.5 degree change is enormous, as most 

satellites in this region stay within 0.2 degrees of their target.  Considering the orbital 

radius of roughly 42,000 kilometers, this is a change in position of about 1,000 

kilometers (along the arc).  Figure 6 displays the longitudinal change for the two months 

(May 2010 and May 2016).  Figure 6 also shows that in 2010, the longitudinal drift of the 

satellite accelerated, or that a force pulled it away from the starting position.  This 

longitudinal drift is examined further in the theoretical model. 

 

 

Figure 6: Galaxy 15 Longitude Drift Comparison, 2010 to 2016. 

 

 The longitudinal drift rate presented in Figure 7 shows the speed at which the 

longitude of the satellite is changing.  It can be clearly seen that the 2016 data have a 



40 

 

relatively constant drift rate, whereas the 2010 data show the drift rate steadily increasing 

in magnitude – or that the satellite was actually accelerating as it moved from its target 

longitude.  This acceleration can be seen in Figure 6, as the 2010 data do not follow a 

linear path.  The lack of drift for the 2016 data in Figure 6, despite the non-zero drift rate 

shown in Figure 7, means that the satellite was undergoing orbit corrections at the time, 

as can be seen more clearly in the satellite’s inclination shown in Figure 10. 

  

Figure 7: Galaxy 15 Longitudinal Drift Rate (Δ𝒂̅) Comparison, 2010 to 2016. 

 

 Figure 8 shows the path the satellite travelled in 2010 and in 2016, as it orbited 

the Earth.  In 2010, the path became more oblong – that is, the periapses became 

significantly lower, and the apoapses grew slightly.  This means the eccentricity of the 

orbit increased, as Figure 9 shows. 
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Figure 8: Galaxy 15 Radius Comparison, 2010 to 2016. 

 

 

Figure 9: Galaxy 15 Eccentricity Comparison, 2010 to 2016. 
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Figure 9 displays how the eccentricity of the satellite really increased in 2010.  

Though normally the eccentricity is allowed to oscillate, as shown by the 2016 controlled 

data, the 2010 increase in the elliptical nature of the orbit indicates that the satellite was 

potentially slipping out of its circular orbit.   

 Finally, the inclinations of the satellite for the months in 2010 and 2016 are 

displayed in Figure 10.  The results show how the inclination in 2010 continually grew, 

in addition to the oscillatory nature.  The data from 2016 clearly show movements made 

by the control mechanism to correct the drifting inclination. 

 

Figure 10: Galaxy 15 Inclination Comparison, 2010 to 2016. 
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Model Validation 

 Utilizing Equations (20) through (25), an Ordinary Differential Equation solver, 

such as Matlab ®’s ODE45, can be used to propagate over small time-steps over a long 

time span, and accurately map the drift of the satellite. This section compares the 

modeled drift to the actual drift to validate the model.  The structure of the model utilizes 

the first data-point of the real 2010 data as a starting point, and then models the satellite 

path from there.  Mapping the longitudes for thirty days reveals how closely the model is 

able to match reality, as Figure 11 shows.  As the integration goes longer, the errors start 

to accumulate, which is why the real data and the model start to deviate around day 20. 

 

 

Figure 11: Galaxy 15 Longitude – Real versus Simulated. 
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 Figure 12 displays how closely the modeled longitudinal drift rate follows reality. 

This has similar results to the longitude – matching very closely initially, but deviating 

before the final days.  Figure 13 shows the differences in the radius.  Similar to the other 

variables, the errors are minimal until the final stretch of the drift. 

 

 

Figure 12: Galaxy 15 𝚫𝒂̅ – Real versus Simulated. 

 

 On to Figure 14, which shows how closely the eccentricities match between the 

model and the real data.  As stated previously, the larger differences here are likely due to 

the assumptions on the solar pressure. 
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Figure 13:  Galaxy 15 Radius – Real versus Simulated. 

 

Figure 14: Galaxy 15 Eccentricity – Real versus Simulated. 
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 Finally, Figure 15 displays how closely the inclination matches between the 

model and the actual data. Figures 11, 12, 13, 14, and 15 demonstrate that the model is 

sufficiently valid for the purposes of this project.  Thus, with the agreement between the 

model and the real data, the model can be employed to investigate which perturbation 

forces cause which COE drifts, as is shown in the following section. 

 

Figure 15: Galaxy 15 Inclination – Real versus Simulated. 

 

Perturbation Force Analysis 

 Analyzing the model to find each perturbing force’s contribution to the orbital 

path, the results are here shown through visual figures, in a manner similar to the figures 

employed in the initial analyses.  Therefore, in Figures 16 through 25, the legend is 

interpreted as follows: 



47 

 

Full Model– the full force model utilizing all perturbing forces. 

Harmonics – only the non-spherical harmonics of the Earth’s gravitation system are 

considered. 

Sun Grav – only the gravitational component of the Sun is considered. 

Moon Grav – only the gravitational component of the Moon is considered. 

Solar Press – only the perturbing force due to the solar pressure from the sun is 

considered. 

2-Body – only the point-mass model of the Earth gravitational force is considered. 

From these contributions, the full model is merely the addition of all the accelerations. 

Looking first at the longitude, in Figure 16, clearly the simple two-body analysis falls far 

short of predicting the full flight path.   

 

Figure 16: Perturbation Effects on Longitude. 
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Figure 17 shows how each perturbing force contributes to the difference between 

the two-body and full model.  Clearly, the perturbation from the non-spherical harmonics 

has the greatest effect on the longitude.  Predictably, the solar pressure force had the 

smallest of the effects on the longitude, barely pushing it slightly westward.  The Moon 

pulled the longitude slightly eastward, and the gravity from the Sun pulled the longitude 

in the opposite direction that the Moon did, though to a lesser magnitude.  Examining 

Equation (20), it can clearly be seen that the only perturbing acceleration on the satellite 

longitude is in the satellite northward direction.  As the Moon has the greatest actual 

force in this direction, it seems more likely that the Moon would cause the greater 

change; however, as the leading term, 
ℎ

𝑟2, depends on the longitudinal drift rate, which in 

turn depends on the non-spherical harmonics as shown in the next segment, the non-

spherical harmonics are actually the driving force behind the drift in longitude. 

 

Figure 17: Longitudinal Perturbation Comparison. 
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 The longitudinal drift rate, Δ𝑎̅, shows an extremely complex interaction of forces.  

Figure 18 indicates that the two-body model predicts none of the path of the longitudinal 

drift rate – instead all the change comes entirely from the perturbations. 

 

Figure 18: Perturbation Effects on Longitudinal Drift Rate. 

 

Figure 19 shows how each of the perturbations changes the longitudinal drift rate.  Most 

immediately, while the negative drift is entirely due to the Earth’s non-homogeneous 

nature, the oscillations around this point are almost entirely due to the gravity from the 

Sun and the Moon.  A constant small oscillation from the solar pressure also modifies the 

overall oscillation.  Clearly, the Earth non-spherical harmonics can be seen driving the 

mean of the drift rate negative, which is the same perturbation that drove the drift of the 
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satellite longitude.  Inspecting Equation (21), the only acceleration not considered is the 

northward perturbation acceleration.  The radial acceleration is multiplied by the 

difference in X and Y direction eccentricities, whereas the tangential acceleration is 

multiplied by the semi-latus rectum but divided by the radius, before the two are 

combined.  As the differences in eccentricities invariably make the radial acceleration 

minute in comparison, the tangential acceleration is the driving acceleration, with the 

radial modulating it.  Similarly to the northward, the tangential perturbing acceleration is 

driven by the magnitude of Earth’s non-spherical harmonics, steadily pulling the satellite 

East. 

 

Figure 19: Longitudinal Drift Rate Perturbation Comparison. 
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Looking closely at how each of the other forces affects the drift rate, the Moon 

provides the next largest in magnitude.  The perturbation from the Moon’s gravity shows 

significant daily oscillations, which makes sense as the satellite will orbit to the opposite 

side of the Earth nearly once a day; however, looking closely, another periodic motion 

can be seen, where a half-step takes roughly 13 days.  This coincides with the orbit of the 

Moon about the Earth.  Both perturbations from the Sun have very constant oscillations.  

This is due to the fact that the total change in distance between the satellite and the Sun 

will change very little in relation to the total distance between the satellite and the Sun. 

Moving on to the eccentricity, Figure 20 displays how again the two-body model does 

not predict any of the changes seen.  Instead, the entirety of the change in the eccentricity 

comes from the perturbations shown in Figure 21.  In Figure 21, it can be seen that the 

solar pressure gives a positive drift, whereas the Earth’s non-spherical harmonics give a 

constant libration about a constant mean, and the Sun’s gravitation gives a nearly 

constant libration about a different mean – with slight variations in each day.  The 

potential errors in the solar pressure assumptions could indicate the solar pressure would 

drive the satellite further in its eccentricity, but likely in the same direction noted here. 

The gravity from the Moon is far different, and clearly drives the path seen in the actual 

eccentricity – both by changing the mean of the oscillations, and by creating the beat-type 

frequency pattern with the Sun’s gravity and Earth’s harmonics that causes the nodal 

points in the eccentricity path of the actual satellite. While the Solar Pressure effect is of 

a small magnitude here, over several months the solar pressure would grow quite large 

and then return back to zero and go negative.  The solar pressure is a force that provides 

an oscillatory acceleration on the eccentricity, but with the period of a full year.  Further, 
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examining Equations (22) and (23), their reliance on all three acceleration directions 

indicates the interactions in eccentricity are quite complex.  That said, the northward 

acceleration is dwarfed by the other two, so out-of-plane forces play a small role.  In the 

Equatorial plane, the gravity from the Earth and the Sun will be mostly oscillatory, and 

the Moon will be oscillatory at frequencies of one day and every orbit of the moon.  The 

solar pressure, on the other hand, will constantly push the satellite away, creating a 

slowly accelerating drift.  This path is non-oscillatory as the attitude of the craft is 

considered to be constant in relation to the Sun, so the direction of action never changes 

during the month studied. 

 

Figure 20: Perturbation Effects on Eccentricity. 

 

 Figure 22 shows that in the inclination, the 2-body model fails to create any 

change.  The inclination drifts entirely due to the gravitational effects of the Sun and 
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Moon, as shown in Figure 23.  The non-spherical harmonics of the Earth, and the solar 

pressure, provide no significant contributions to the change in inclination.  The 

 

Figure 21: Eccentricity Perturbation Comparison. 

long-term oscillations in the inclination are also caused entirely by the Moon.  This is due 

to the effect of the Moon moving closer or further from the satellite, and also being out-

of-plane of the satellite, causing the dramatic changes.  The Sun is also providing an 

oscillating drift pattern, as it is also getting closer and further from the satellite; however, 

the vast distance to the Sun, as well as the distance changing little over a single month, 

dwarfs the change in distance to the Sun, so this effect is not visible in Figure 23. 

Analyzing Equations (24) and (25) for the inclination, it can be seen that the only 

acceleration operating on the satellite is in the North direction – or that only out-of-plane 

forces will affect it.  Thus, the Earth’s non-spherical harmonics and the solar pressure 

both have very minimal effects; however, the Sun and the Moon, both not lying on the 

same orbital plane as the satellite, pull the inclination further Northward. 
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Figure 22: Perturbation Effects on Inclination. 

 

Figure 23: Inclination Perturbation Comparison. 
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Finally, on to the radius shown in Figure 24, it can be seen that the two-body 

model oscillates through a larger bound than what the fully modeled radius did.  This 

result indicates that the changes from the perturbation forces should be largely negative 

on the radius.  Figure 25 mostly affirms this conclusion, as even though the Sun’s 

perturbation forces are nearly symmetrical about zero, and the Moon’s gravitational force 

is asymmetrical about zero, the perturbation from the Earth’s non-spherical harmonics are 

in a constant negative trend.  The odd shape the radius takes comes mostly from the 

oscillations caused by the Moon’s gravity.  This effect is likely due to the changes on the 

eccentricity the Moon causes.  The solar pressure provides a very interesting effect, as it 

continually spirals outward.  This result shows that the Sun has a greater effect on the 

radius through solar pressure than through gravity.  That said, the effects on the radius by 

all the perturbing forces are driven by the changes in the eccentricity.  The solar pressure 

acceleration increases the satellite’s oscillations further and further each day in radius, 

because it is pushing the eccentricity positive, as shown in Figure 21. 
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Figure 24: Perturbation Effects on Radius. 

 

 

Figure 25: Radius Perturbation Comparison.
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CONCLUSIONS AND RECOMMENDATIONS 

Examining each perturbation in detail, the first conclusion that can easily be 

garnered concerns the solar pressure.  While it did have a contribution in most directions, 

only minimally affecting the longitude and inclination, the solar pressure consistently 

provided the least change in the orbit – with the exception of the eccentricity and radius.  

While the magnitude of the change to the radius looks erroneously large, this is actually 

due to the solar pressure increasing the eccentricity, as shown in Figure 21.  As the orbit 

grows more and more eccentric, the radius will have higher maximums and lower 

minimums, and thus the magnitude of the radius change grows as depicted in Figure 25.  

The remaining effects from the solar pressure are as expected, as the magnitude of the 

acceleration due to solar pressure is about two orders of magnitude smaller than the 

others.  Additionally, this conclusion provides verification in the model – the model does 

not account for the attitude of the satellite, and the solar pressure is the only perturbation 

that was considered that would need to account for attitude. 

Next, the effect of the moon’s gravitational field is tremendous.  While it is not 

always the largest contributing perturbation, the diurnal nature of this perturbation forces 

large, fluctuating oscillations in the longitudinal drift rate, eccentricity, inclination, and 

radius.  The magnitude of this force is large, overcoming the magnitude of the Sun’s 

gravity in every direction, especially in the inclination, and really displays how the orbit 

of the Moon changes everything in the GEO regime. 

The acceleration due to the Sun’s gravity, while still large, is considerably smaller 

than that from the Moon’s gravity.  This perturbation gave fairly constant oscillation 

patterns to each direction except the inclination, and a fluctuating beat-cycle to the 
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longitudinal drift rate.   The nearly-constant oscillations are due to the relatively small 

changes in the distance from the satellite to the Sun from day-to-day over the course of 

the month studied.  Concerning the inclination, the Sun’s gravity would pull the satellite 

in a sinusoidal oscillation over a full year period; however, in this study, only one month 

was considered, so only a portion of this oscillation is noted. 

Finally, by far the greatest perturbing force comes from the non-spherical 

harmonics of the Earth.   Nearly controlling the entire drift of the longitude, this force is 

what pulled Galaxy 15 furthest from its starting position, and it caused the drift rate to 

accelerate throughout the month studied.  That said, its contribution to the eccentricity of 

the orbit is significantly smaller than the contribution from the Moon.  Additionally, it 

had no effect whatsoever on the inclination. 

The perturbing forces and their principle directions of action are summarized in 

Table 1. 

Table 1: Summary of Forces and Primary COE Over One Month. 

 

 

Comparing the actual distance the satellite drifted and the predicted distance by 

the model, it can be seen that initially they match entirely, but as the drift progresses past 

twenty days, deviations emerge.  While some of the deviations are definitely due to the 

numerical integration and build-up of small errors, some deviation is potentially due to 

neglected forces, such as Venus’ and Jupiter’s gravitational forces, the truncation of the 

Classical Orbital Element Primary Perturbing Force Secondary Perturbing Force

Longitude Earth Non-Spherical Harmonics Moon's Gravity

Longitudinal Drift Rate Earth Non-Spherical Harmonics Moon's Gravity

Eccentricity Moon's Gravity Solar Pressure

Inclination Moon's Gravity Sun's Gravity

Radius Moon's Gravity Solar Pressure
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spherical harmonics to eight degrees, the polynomial fits for the Sun and Moon locations, 

and the assumptions made for the solar pressure perturbation. 

 

One problem that arose during the final steps of computation was the lack of 

computing power to run the numerical analysis to the accuracy desired for the full length 

of time desired.  To remedy this deficiency, the numerical analysis was run for six sets of 

5-day periods instead of a single 30-day period.  These six sets were then combined to 

create the 30-day period analyzed for the specific perturbation contributions. 

 

Future Improvements 

In order to improve the analysis done here, a better attitude model for the satellite 

is necessary.  Since the satellite information directly concerning this is not public, the 

best method for obtaining such information would be to estimate the reflectivity by area 

to mass ratio, or 
𝑐𝑅𝐴𝑠

𝑚
, from the ephemerides, and verified using an analysis of the power 

the solar panels were collecting.  As the solar panels almost entirely govern the solar 

pressure on the satellite, a more accurate model would provide for a better estimate on the 

solar pressure actually acting on the satellite at any point in time.  This process would 

provide for a more accurate model of the forces; however, similar conclusions as those 

found in this study would be expected. 

Finally, the addition of smaller forces mentioned previously, such as the 

gravitational forces from Venus, Jupiter, and then even smaller and further elements, 

could be added to improve the accuracy of the model.  While it would be interesting to 

see what contribution each of these forces has, the errors currently are very small, so it is 
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expected that the contributions from these neglected forces are also quite small.  Yet, to 

take this analysis a step further, these forces should be included.
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Legendre Polynomials 
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 1Vallado, D.A. and McClain, W.D. 2001. Fundamentals of Astrodynamics and Applications (3rd ed.). 

Dordrecth: Kluwer Academic 

The Legendre Polynomial, represented by Equation (A1), is utilized to codify a sphere 

into specific sections.  The polynomial, Pl,m[γ] will create ever-smaller portions with 

higher values of l.  Here, l and m are merely counters, where l will rise to infinity, and m 

will rise from 0 to l for each value of l.  This means, for an l value of 2, three P 

polynomials are obtained, P2,0, P2,1, and P2,2.  The Legendre Polynomial is given by1 

𝑃𝑙,𝑚[𝛾] =
1

2𝑙𝑙!
(1 − 𝛾2)𝑚/2 𝑑𝑙+𝑚

𝑑𝛾𝑙+𝑚
(𝛾2 − 1)𝑙.    (A1) 

For gravitational spherical harmonics, the variable γ is replaced by sin ϕ, so the equation 

becomes 

𝑃𝑙,𝑚[sin 𝜙] =
1

2𝑙𝑙!
(1 − sin 𝜙2)𝑚/2 𝑑𝑙+𝑚

𝑑 sin 𝜙𝑙+𝑚
(sin 𝜙2 − 1)𝑙.   (A2) 

This means for each new value of l, a new equation is obtained to take derivatives of, but 

for each value of m at the same value of l, another derivative of the same equation is 

simply taken.  Vallado and McClain1 present the polynomials for l=0 to 4, so this will 

only consider the evaluation of the values l=5 to 8. 

Taking Equation (A2) in two halves, the expression can simplify quite easily.  The first 

portion becomes 

(cos 𝜙2)
𝑚/2

2𝑙𝑙!
=

cos 𝜙𝑚

2𝑙𝑙!
,      

which is fairly simple to evaluate for m and l; however, it changes with changing ϕ.  For 

l=5, this gives us, with m going from 1 to 5 

cos 𝜙𝑚

3840
. 

Next, l=6 through 8 is shown in the following line: 

cos 𝜙𝑚

46080
;

cos 𝜙𝑚

645120
;

cos 𝜙𝑚

10321920
. 
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Thus, it becomes obvious why this is only considered through l=8 – any further and the 

contribution becomes miniscule, though not insignificant for precise orbit determination. 

The second half of Equation (A1) is more difficult, but with some simplification, it too is 

not impossible.  Replacing sin 𝜙 with x gives:

𝑑𝑙+𝑚

𝑑 sin 𝜙𝑙+𝑚
(sin 𝜙2 − 1)𝑙 =

𝑑𝑙+𝑚

𝑑𝑥𝑙+𝑚
(𝑥2 − 1)𝑙,    (A3) 

which becomes, for l=5 to 8, respectively: 

𝑑5+𝑚

𝑑𝑥5+𝑚
(𝑥2 − 1)5 =

𝑑5+𝑚

𝑑𝑥5+𝑚
(𝑥10 − 5𝑥8 + 10𝑥6 − 10𝑥4 + 5𝑥2 − 1),  (A4) 

𝑑6+𝑚

𝑑𝑥6+𝑚
(𝑥2 − 1)6 =

𝑑6+𝑚

𝑑𝑥6+𝑚
(𝑥12 − 6𝑥10 + 15𝑥8 − 20𝑥6 + 15𝑥4 − 6𝑥2 + 1), (A5) 

𝑑7+𝑚

𝑑𝑥7+𝑚
(𝑥2 − 1)7 =

𝑑7+𝑚

𝑑𝑥7+𝑚
(𝑥14 − 7𝑥12 + 21𝑥10 − 35𝑥8 + 35𝑥6 − 21𝑥4 + 7𝑥2 −

1),        (A6) 

and 

𝑑8+𝑚

𝑑𝑥8+𝑚
(𝑥2 − 1)8 =

𝑑8+𝑚

𝑑𝑥8+𝑚
(𝑥16 − 8𝑥14 + 28𝑥12 − 56𝑥10 + 70𝑥8 − 56𝑥6 + 28𝑥4 −

8𝑥2 + 1).      (A7) 

Since the derivatives of Equation (A4) start at the 5th degree, only the 5th through 10th 

derivatives are needed; these are, when combined with the first half of the polynomial 

above: 

1

3840
(30240 sin 𝜙5 − 33600 sin 𝜙3 + 7200 sin 𝜙), 

cos 𝜙

3840
(151200 sin 𝜙4 − 100800 sin 𝜙2 + 7200), 

cos 𝜙2

3840
(604800 sin 𝜙3 − 201600 sin 𝜙), 

cos 𝜙3

3840
(1814400 sin 𝜙2 − 201600), 

945 sin 𝜙 cos 𝜙4, 



68 

 

 

and 

945 cos 𝜙5. 

Similarly, for l=6, the following polynomials form: 

1

46080
(665280 sin 𝜙6 − 907200 sin 𝜙4 + 302400 sin 𝜙2 − 14400), 

cos 𝜙

46080
(3991680 sin 𝜙5 − 3628800 sin 𝜙3 + 604800 sin 𝜙), 

cos 𝜙2

46080
(19958400 sin 𝜙4 − 10886400 sin 𝜙2 + 604800), 

cos 𝜙3

46080
(79833600 sin 𝜙3 − 21772800 sin 𝜙) 

cos 𝜙4

46080
(239500800 sin 𝜙2 − 21772800), 

10395 sin 𝜙 cos 𝜙5, 

and 

10395 cos 𝜙6. 

Similarly, for l=7, the following polynomials form: 

1

645120
(17297280 sin 𝜙7 − 27941760 sin 𝜙5 + 12700800 sin 𝜙3 − 1411200 sin 𝜙), 

cos 𝜙

645120
(121080960 sin 𝜙6 − 139708800 sin 𝜙4 + 38102400 sin 𝜙2 − 1411200), 

cos 𝜙2

645120
(726485760 sin 𝜙5 − 558835200 sin 𝜙3 + 76204800 sin 𝜙), 

cos 𝜙3

645120
(3632428800 sin 𝜙4 − 1676505600 sin 𝜙2 + 76204800), 

cos 𝜙4

645120
(14529715200 sin 𝜙3 − 3353011200 sin 𝜙) 

cos 𝜙5

645120
(43589145600 sin 𝜙2 − 3353011200), 

135135 sin 𝜙 cos 𝜙6, 

and 
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135135 cos 𝜙7. 

Similarly, for l=8, the following polynomials form: 

1

10321920
(518918400 sin 𝜙8 − 968647680 sin 𝜙6 + 558835200 sin 𝜙4 −

101606400 sin 𝜙2 + 2822400), 

cos 𝜙

10321920
(4151347200 sin 𝜙7 − 5811886080 sin 𝜙5 + 2235340800 sin 𝜙3 −

203212800 sin 𝜙), 

cos 𝜙2

10321920
(29059430400 sin 𝜙6 − 29059430400 sin 𝜙4 + 6706022400 sin 𝜙2 −

203212800), 

cos 𝜙3

10321920
(174356582400 sin 𝜙5 − 116237721600 sin 𝜙3 + 13412044800 sin 𝜙), 

cos 𝜙4

10321920
(871782912000 sin 𝜙4 − 348713164800 sin 𝜙2 + 13412044800), 

cos 𝜙5

10321920
(3487131648000 sin 𝜙3 − 697426329600 sin 𝜙) 

cos 𝜙6

10321920
(10464394944000 sin 𝜙2 − 697426329600), 

2027025 sin 𝜙 cos 𝜙7, 

and 

2027025 cos 𝜙8. 
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Appendix B 

 

Matlab® Code 
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% This program sets up the model for a spacecraft in circular planar 

orbit 
% about Earth at the geosynchronous altitude 

  
% David P. Schafer 
% 11/27/2016 

  
close all  
clear x t lambda deltaA Ex Ey Ix Iy Ecc Inc g s r 
clc 
global G0 A mu we 

  
G0 = 3.8314; 
we = .00007292115;%85; % Rotational velocity of the Earth in radians 

per sec 
mu = 3.986004418*10^14; % Gravity! in m^3/s^2 
A = 42164200; % Semi-major axis in m 
tspan = 0:(86400*5); 
lam0 = -2.315341310053890; % initial longitude - ECEF 
delA = -9.646508181568860e-06; % ECI data 
ex = 2.392198936783866e-04;  
ey = 2.513727391392481e-04;  
ix = 0.002504178455663; 
iy = -4.047830759746088e-04; 

  
x0 = [lam0;delA;ex;ey;ix;iy]; 

  
[t,x] = ode45('deltax', tspan, x0); 

  
y0 = [x(end,1);x(end,2);x(end,3);x(end,4);x(end,5);x(end,6)]; 

  
[tt,y] = ode45('deltax', tspan + 86400*5, y0); 

  
z0 = [y(end,1);y(end,2);y(end,3);y(end,4);y(end,5);y(end,6)]; 

  
[ttt,z] = ode45('deltax', tspan + 86400*10, z0); 

  
a0 = [z(end,1);z(end,2);z(end,3);z(end,4);z(end,5);z(end,6)]; 

  
[tttt,a] = ode45('deltax', tspan + 86400*15, a0); 

  
b0 = [a(end,1);a(end,2);a(end,3);a(end,4);a(end,5);a(end,6)]; 

  
[ttttt,b] = ode45('deltax', tspan + 86400*20, b0); 

  
c0 = [b(end,1);b(end,2);b(end,3);b(end,4);b(end,5);b(end,6)]; 

  
[tttttt,c] = ode45('deltax', tspan + 86400*25, c0); 

  
t = [t;tt;ttt;tttt;ttttt;tttttt]; 
lambda = [x(:,1);y(:,1);z(:,1);a(:,1);b(:,1);c(:,1)]; 
deltaA = [x(:,2);y(:,2);z(:,2);a(:,2);b(:,2);c(:,2)]; 
Ex = [x(:,3);y(:,3);z(:,3);a(:,3);b(:,3);c(:,3)]; 
Ey = [x(:,4);y(:,4);z(:,4);a(:,4);b(:,4);c(:,4)]; 
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Ix = [x(:,5);y(:,5);z(:,5);a(:,5);b(:,5);c(:,5)]; 
Iy = [x(:,6);y(:,6);z(:,6);a(:,6);b(:,6);c(:,6)]; 
for i = 1:length(Ex) 
Ecc(i) = sqrt(Ex(i)^2 + Ey(i)^2); 
Inc(i) = sqrt(Ix(i)^2 + Iy(i)^2); 
g(i) = G0 + we*t(i); 
s(i) = lambda(i) + g(i); 
r(i) = A*(deltaA(i) + 1)*(1 - Ex(i)^2 - Ey(i)^2)/(1 + Ex(i)*cos(s(i)) + 

Ey(i)*sin(s(i))); 
end 
t = t/86400.002; 

  
plot(t,lambda*180/pi) 
xlabel('Days'); 
ylabel('Longitude in Degrees'); 

  
% figure 
% plot(t,deltaA) 
% xlabel('Time (Days)'); 
% ylabel('Longitudinal Drift Rate'); 
%  
% figure 
% plot(t,Ecc) 
% xlabel('Days'); 
% ylabel('Eccentricity'); 
%  
% figure 
% plot(t,Inc) 
% xlabel('Days'); 
% ylabel('Inclination'); 
%  
% figure 
% plot(t,r) 
% xlabel('Days'); 
% ylabel('Radius'); 
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function dxdt = deltax(t,x) 

  
% David P. Schafer 
% 11/27/2016 

  
format long 

  
global G0 we A mu 
a = [0,0,0]; 
lam = x(1); % ECEF 
dela = x(2); % ECI 
ex = x(3); 
ey = x(4); 
ix = x(5); 
iy = x(6); 
inc = sqrt(ix^2 + iy^2); 
ecc = sqrt(ex^2 + ey^2); 
g = G0 + we*t; 
while g > 2*pi 
    g = g-2*pi; 
end 
OHM = -atan(ix/iy); 
ohm = atan(ey/ex) - OHM; 

  
as = 20; % surface area of satellite? m*m 
cr = 1.35; % reflectivity of solar panels 
psr = 4.56*10^-6; % N/m*m 
msat = 2000; % mass of satellite, kg 

  
nu = lam + 1*g - ohm - OHM; 

  
mus = 1.32712440018*10^20; % mu of sun - m^3/s^2 
mum = 4.9048695*10^12; % mu of moon - m^3/s^2 
%% 

  
s = lam + g; 
while s > 2*pi 
    s = s - 2*pi; 
end 

  
r = A*(dela + 1)*(1 - ex^2 - ey^2)/(1 + ex*cos(s) + ey*sin(s)); 
p = A*(dela + 1)*(1 - ex^2 - ey^2); 
h = sqrt(mu*p); 

  
Q1 = tan(inc/2)*sin(OHM); 
Q2 = tan(inc/2)*cos(OHM); 
QQ = [(1 + Q2^2 - Q1^2)*cos(s) + 2*Q1*Q2*sin(s);(1 + Q1^2 - 

Q2^2)*sin(s) + 2*Q1*Q2*cos(s); 2*(Q2*sin(s) - Q1*cos(s))]; 

  
rr = (r/(1 + Q1^2 + Q2^2))*QQ; % Dr. Seubert eq. 12 - eci 

  
rotate = [cos(OHM)*cos(ohm) - sin(OHM)*sin(ohm)*cos(inc), -

cos(OHM)*sin(ohm) - sin(OHM)*cos(ohm)*cos(inc), sin(OHM)*sin(inc); 
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sin(OHM)*cos(ohm) + cos(OHM)*sin(ohm)*cos(inc), -sin(OHM)*sin(ohm) + 

cos(OHM)*cos(ohm)*cos(inc), -cos(OHM)*sin(inc); sin(ohm)*sin(inc), 

cos(ohm)*sin(inc), cos(inc)]; 
r2 = rotate*[p*cos(nu)/(1 + ecc*cos(nu)); p*sin(nu)/(1 + ecc*cos(nu)); 

0]; 
v = rotate*[-(mu/p)^.5*sin(nu); (mu/p)^.5*(ecc + cos(nu)); 0]; 

  
ener = norm(v)^2/2 - mu/r; 
deltaa = (-mu/(2*ener)-A)/A; 

  
ecchange = [cos(g), -sin(g), 0; sin(g), cos(g), 0; 0, 0, 1]; 
rrecef = ecchange\rr; 
vvecef = ecchange\v; 
recef = sqrt(dot(rrecef,rrecef)); 

  
% ph = asin(rrecef(3)/recef); 
ph = atan(rrecef(3)/sqrt(rrecef(2)^2 + rrecef(1)^2)); 

  
%stime = linspace(-.5*2*pi/365.25,2*pi*30.5/365.25,86400*31+1); 
stime = linspace(0,2*pi*31/365.25,86400*31+1); 
ps = 1*10^11*[0.000000001231397  -0.000000028192536   0.000000220724496  

-0.000000696110680   0.000002527565454 0.000054714775399  -

0.002935660657598  -0.068363221183367   1.147958294850282]; 
sss = polyval(ps,stime); 
ps2 = 1*10^10*[0.000000010577885  -0.000000346859404   

0.000004281092874  -0.000024314276274   0.000076908243913 -

0.000744005026443  -0.022657979025645   0.760359730095780   

8.959090128011694]; 
ss2 = polyval(ps2,stime); 
ps3 = 1*10^10*[0.000000006050615  -0.000000186475963   

0.000002176867466  -0.000011798093022   0.000036284704353 -

0.000332000227120  -0.009810180895705   0.329672921952460   

3.883925232122224]; 
ss3 = polyval(ps3,stime); 
res = [sss(floor(t+1)); ss2(floor(t+1)); ss3(floor(t+1))]; % earth to 

sun 
%res = ersun(t); 
rs = res - rr; % define sat to sun 

  
%mtime = linspace(-.5*2*pi/27.322,2*pi*30.5/27.322,86400*31+1); 
mtime = linspace(0,2*pi*31/27.322,86400*31+1); 
pm = 1*10^8*[0.000101327109054  -0.002319929681139   0.018167291807621  

-0.055800313738517   0.114946027844420 -0.562297318378231   

0.427725810332882   3.516129197912261  -1.216399516612842]; 
mmm = polyval(pm,mtime); 
pm2 = 1*10^8*[0.000087050522716  -0.002854658384220   0.035251819897064  

-0.201130690491850   0.545894068041208 -0.979490407031079   

2.424549911936519  -1.668444060540370  -3.257784162975650]; 
mm2 = polyval(pm2,mtime); 
pm3 = 1*10^8*[0.000049794010890  -0.001534686225960   0.017923344013322  

-0.097540035664799   0.260870706445225 -0.502417542439565   

1.154148301823466  -0.431551168407016  -1.609681950477247]; 
mm3 = polyval(pm3,mtime); 
rem = [mmm(floor(t+1)); mm2(floor(t+1)); mm3(floor(t+1))]; % define 

earth to moon 
%rem = ermoon(t); 
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rm = rem - rr; % define sat to moon 

  
ea = [0;0;0]; 
es = 0; 
em = 0; 
esp = 0; 

  
ell = ellipsoidal(r,ph,lam,rrecef); 

  
ea = ecchange*ell;  % rotated to inertial here 
es = mus*(rs/norm(rs)^3 - res/norm(res)^3); % 
em = mum*(rm/norm(rm)^3 - rem/norm(rem)^3); % 
esp = (-psr*cr*as/msat)*(rs/sqrt(dot(rs,rs))); % x2 inertial frame 

radiation pressure 
a = ea + es + em + esp; 
%% rotate from earth-centered inertial to satellite body-fixed here 

(LVLH) 
RR = rr/sqrt(dot(rr,rr)); 
WW = cross(rr,v)/sqrt(dot(cross(rr,v),cross(rr,v))); 
SS = cross(WW,RR); 
rot = [RR,SS,WW]; 
a = rot\a; 
%% 

  
dlamdt = h/r^2 + (r/h)*tan(inc/2)*sin(ohm + nu)*a(3) - we; 

  
ddeltaa = (A*(2*(dela + 1)^2)/(h))*((ex*sin(s) - ey*cos(s))*a(1) + 

p*a(2)/r); 

  
dex = (r/h)*((p/r)*sin(s)*a(1) + (ex + (1 + (p/r))*cos(s))*a(2)) + 

ey*(r/h)*((tan(inc/2)*sin(OHM)*cos(s) - 

tan(inc/2)*cos(OHM)*sin(s))*a(3)); 
dey = (r/h)*((-p/r)*cos(s)*a(1) + (ey + (1 + (p/r))*sin(s))*a(2)) - 

ex*(r/h)*((tan(inc/2)*sin(OHM)*cos(s) - 

tan(inc/2)*cos(OHM)*sin(s))*a(3)); 
dix = ((r/h)*sin(OHM)*cos(ohm + nu) + 

(inc*r/(h*sin(inc)))*cos(OHM)*sin(ohm + nu))*a(3); 
diy = ((inc*r/(h*sin(inc)))*sin(OHM)*sin(ohm + nu) - 

(r/h)*cos(OHM)*cos(ohm + nu))*a(3); 

  
dxdt = [dlamdt;ddeltaa;dex;dey;dix;diy]; 
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The previous letter was submitted to the editors of the webpage Navipedia on October 9th, 

2016.  No response was received. 
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