
Liquid Level Indicator (LLI) Utilizing an Optical Time-of-Flight Sensor

for Clean Agent Fire Suppression System Cylinders

by

Ian Stumpe

A Report Submitted to the Faculty of the

Milwaukee School of Engineering

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Engineering

Milwaukee, Wisconsin

May 2023

2

Abstract

The purpose of this report is to describe, explain and discuss the results associated

with the author’s Milwaukee School of Engineering (MSOE) Master of Science in

Engineering (MSE) capstone project. The purpose of the capstone project is to design a

Time-of-Flight (TOF) sensor-based liquid level indicator/sensor (LLI or LLS) to measure

fire suppression agents in pressurized storage cylinders associated with clean agent fire

suppression systems. The conventional clean agents today are FM-200 and 3M Novec

1230, and in compliance with standard practice, the amount of agent in a storage cylinder

must be regularly measured to ensure that the fire suppression system can provide

adequate protection in the event of a fire. The current technology employed to measure

fire suppression agents in storage cylinders features a Dip Tape design that is associated

with inaccuracies because it is cumbersome to use and prone to human-operator errors. A

review of literature was first undertaken for the following purposes: (i) to verify the

relevant standards in clean agent fire suppression systems, (ii) to clarify the types of

sensors available for the measurement of liquid levels, and (iii) to review relevant patent

literature to determine the state-of-the-art in liquid level measurement, particularly with

respect to fire suppression systems. A new design—which leverages the temperature and

weight of the liquid agent to calculate the volume and mass of agent in a storage

cylinder—was developed. The new design features a Time-of-Flight (TOF) sensor, a

Texas Instruments LM35 temperature sensor, a Human Machine Interface (HMI), non-

volatile system memory to store settings and data, and an ATMEGA328P

microcontroller. System hardware and software programming was performed with

Arduino. A POC system was successfully developed in five phases. In Phase One,

components were selected, and a prototype unit was assembled. In Phase Two, the

Arduino microcontroller firmware was developed, enabling the system to display the

TOF sensor data and temperature data. Phase Three entailed the development of an

algorithm for converting the TOF and temperature data into a volume and weight. Phase

Four saw the development of additional firmware features (i.e., a pushbutton), and Phase

Five was devoted to the challenging development of the user interface. The report

features detailed explanations of each of these phases, including development and

strategies associated with firmware and other source code. Following the development

phases, accuracy and repeatability testing and verification of sensor data, and verification

of the firmware were undertaken. In place of FM-200 and 3M Novec 1230, water—

which has similar chemical characteristics—was employed. The project demonstrates

that the new TOF system design can accurately determine the agent weight and is

therefore a promising LLI alternative technology for clean agent fire suppression

systems. However, testing and verification revealed an inconsistency in sensor data

associated with temperature, along with the realization that the LM35 temperature sensor

needs to be replaced with a more accurate sensor. It was additionally determined that the

current hardware memory size is likely inadequate to support significant data recording.

Firmware testing, moreover, revealed two software bugs, one associated with serial

communications and one associated with data recording. Further testing and

development associated with these issues—along with the need to verify the system with

FM-200 and 3M Novec 1230—is recommended.

3

Acknowledgments

I would like to express my deepest appreciation to my advisor Dr. Cory Prust and

committee members Gary Shimek and Dr. Subha Kumpaty. I also could not have

undertaken this journey without the full support and understanding of my spouse

Michelle and daughter Scarlett.

4

Table of Contents

List of Figures ... 6

List of Tables .. 10

Nomenclature .. 11

Introduction ... 13

Background ... 18

Clean Agent Fire Suppression Systems .. 18

Time-of-Flight Sensors ... 23

Review of Literature ... 24

Methods... 34

Phase One Development ... 35

Phase Two Development .. 39

Phase Three Development .. 49

Phase Four Development .. 55

Phase Five Development... 57

Results ... 92

VL53L1X TOF Sensor’s Region of Interest Calibration .. 92

Accuracy and Repeatability Verification of the VL53L1X TOF Sensor 97

Accuracy and Repeatability Verification of the Temperature Sensor 98

LLI Firmware Rev 2.0 Verification .. 99

5

LLI Firmware with User Interface Rev 8.0 Verification .. 101

Conclusions ... 101

Recommendations ... 102

References ... 104

Appendix A: LLI Firmware Rev 1.0... 115

Appendix B: ROI Calibration Code ... 120

Appendix C: MSE Capstone LLI Test Plan Rev 2.0 .. 123

Appendix D: LLI Firmware Rev 2.0... 135

Appendix E: LLI Firmware with Interrupt Rev 1.0 .. 142

Appendix F: ROI Center-Point Calibration Data... 146

Appendix F: ROI Center-Point Calibration Data... 146

Appendix G: LLI Tube Assembly Drawing .. 147

Appendix G: LLI Tube Assembly Drawing .. 147

Appendix H: LLI External Float Assembly ... 148

Appendix H: LLI External Float Assembly ... 148

Appendix I: LLI Internal Float Assembly ... 149

Appendix I: LLI Internal Float Assembly ... 149

Appendix J: Serial_Comms_Rev_5 ... 150

Appendix K: LLI Firmware with User Interface Rev 8 ... 172

Appendix L: LLI Firmware with User Interface Rev 8 Flowchart 207

file:///D:/GE797%20Final%20Project/Final%20Report/Ian%20Stumpe%20Capstone%20Project%20Report%20Rev3%2005-18-23.docx%23_Toc135582058
file:///D:/GE797%20Final%20Project/Final%20Report/Ian%20Stumpe%20Capstone%20Project%20Report%20Rev3%2005-18-23.docx%23_Toc135582060
file:///D:/GE797%20Final%20Project/Final%20Report/Ian%20Stumpe%20Capstone%20Project%20Report%20Rev3%2005-18-23.docx%23_Toc135582062
file:///D:/GE797%20Final%20Project/Final%20Report/Ian%20Stumpe%20Capstone%20Project%20Report%20Rev3%2005-18-23.docx%23_Toc135582064

6

List of Figures

Figure 1: Dip Tape Liquid Level Indicator ... 14

Figure 2: Sample Lookup Table that Converts Liquid Level to Weight 16

Figure 3: Magnetic Trap Suppression Tank Level Sensor Patent WO2020/112241A1 ... 17

Figure 4: Clean Agent Fire Suppression System Equipment... 19

Figure 5: Available Liquid Level Sensors ... 22

Figure 6: Optical Tank-Level Gauge Patent US5585786 ... 25

Figure 7: Fluid Level Indicator Patent WO82/04316A1 .. 26

Figure 8: Water Level Sensing Apparatus Patent KR20150004237U 27

Figure 9: Magneto-strictive Liquid Level Patent CN105486382A 28

Figure 10: Non-Contact Time-of-Flight Fuel Level Sensor using Plastic Optical Fiber

Patent Number US5585786 .. 29

Figure 11: Liquid Extinguisher Steel Cylinder LLI Patent CN206772394U 30

Figure 12: Flammable Liquid LLI Patent DE202016006955U1 31

Figure 13: Adaptable Suppression Tank Level Sensor Patent WO2020/112218A1 32

Figure 14: Magnetic Trap Suppression Tank Level Sensor Patent WO2020/112241A1 . 33

Figure 15: Proof-of-Concept Sensor Design... 35

Figure 16: TOF LLI Sensor Unit Side View. .. 37

Figure 17: TOF LLI Sensor Unit Bottom View Showing VL53L1X Sensor. 37

Figure 18: TOF LLI Sensor Unit Internal View Showing Arduino UNO and LM35. 38

Figure 19: TOF LLI Full Assembly. ... 38

Figure 20: Source Code Section One. ... 39

Figure 21: Source Code Section Two. ... 40

7

Figure 22: Source Code Section Three. .. 41

Figure 23: Source Code Section Four A. .. 43

Figure 24: Source Code Section Four B. ... 43

Figure 25: VL53L1X Field-of-View at 27° (Pink) and 15° (Blue) 44

Figure 26: VL53L1X 16x16 SPAD Receiving Array .. 44

Figure 27: ROI Calibration Source Code Section One. ... 46

Figure 28: ROI Calibration Source Code Section Two. ... 46

Figure 29: ROI Calibration Source Code Section Three A. .. 47

Figure 30: ROI Calibration Source Code Section Three B... 48

Figure 31: VL53L1X Receiving Array ROI Setting... 49

Figure 32: Source Code Revision 2.0 Section One... 52

Figure 33: Source Code Revision 2.0 Section Two. ... 52

Figure 34: Source Code Revision 2.0 Section Three. .. 53

Figure 35: Source Code Revision 2.0 Section Four. ... 54

Figure 36: Source Code Revision 2.0 Section Five. ... 54

Figure 37: Going to Sleep Function Section A. ... 55

Figure 38: Going to Sleep Function Section B. .. 56

Figure 39: Section One of the Serial_Comms_Rev_5 code. ... 58

Figure 40: Section Two Part A of the Serial_Comms_Rev_5 code. 60

Figure 41: Section Two Part B of the Serial_Comms_Rev_5 code................................. 61

Figure 42: Devicemenu Function Section A. ... 62

Figure 43: Devicemenu Function Section B. .. 63

Figure 44: Devicemenu Function Section C. ... 65

file:///D:/GE797%20Final%20Project/Final%20Report/Ian%20Stumpe%20Capstone%20Project%20Report%20Rev1%2004-29-23.docx%23_Toc134310278

8

Figure 45: Devicemenu Function Section D. ... 66

Figure 46: Devicemenu Function Section D Continued. ... 67

Figure 47: Devicemenu Function Section E. .. 68

Figure 48: Devicemenu Function Section F. ... 69

Figure 49: Devicemenu Function Section G. ... 69

Figure 50: Devicemenu Function Section H. .. 70

Figure 51: Devicemenu Function Section H Continued. ... 71

Figure 52: Devicemenu Function Section I. ... 71

Figure 53: Loop Function While Loop. .. 72

Figure 54: LLI Firmware with User-Interface Section One. ... 74

Figure 55: LLI Firmware with User-Interface Section Two. ... 75

Figure 56: LLI Firmware with User-Interface Defined Functions. 76

Figure 57: LLI Firmware with User-Interface getdistance() Function. 78

Figure 58: LLI Firmware with User-Interface getvolume() Function. 79

Figure 59: LLI Firmware with User-Interface gettemp() Function. 79

Figure 60: LLI Firmware with User-Interface getmass() Function Switch Case 1. 81

Figure 61: LLI Firmware with User-Interface getmass() Function Switch Case 2. 81

Figure 62: LLI Firmware with User-Interface getmass() Function Switch Case 3. 82

Figure 63: LLI Firmware with User-Interface displayData() Function. 83

Figure 64: LLI Firmware with User-Interface displayRefresh() Function and wakeup()

ISR. ... 85

Figure 65: LLI Firmware with User-Interface dataRecording() Function 86

Figure 66: LLI Firmware with User-Interface recordingRate()” Function Snippet. 87

9

Figure 67: LLI Firmware with User-Interface ISR(TIMER1_COMPA_vect) ISR......... 88

Figure 68: LLI Firmware with User-Interface recordData() Function. 89

Figure 69: LLI Firmware with User-Interface checkLimits() Function. 89

Figure 70: LLI Firmware with User-Interface setup() Function. 90

Figure 71: LLI Firmware with User-Interface setup() Function Continued. 91

Figure 72: LLI Firmware with User-Interface loop() Function. 92

Figure 73: Optimal ROI Center-Points for 102mm ±1mm (Green). 93

Figure 74: Optimal ROI Center-Points for 152mm ±1mm (Green). 93

Figure 75: Optimal ROI Center-Points for 202mm ±1mm (Green). 94

Figure 76: Optimal ROI Center-Points for 252mm ±1mm (Green). 94

Figure 77: Optimal ROI Center-Points for 301mm ±1mm (Green). 95

Figure 78: Optimal ROI Center-Points for 352mm ±1mm (Green). 95

Figure 79: 151mm Time-of-Flight Sensor Data at Three Different Temperatures. 97

Figure 80: 251mm Time-of-Flight Sensor Data at Three Different Temperatures. 98

Figure 81: 351mm Time-of-Flight Sensor Data at Three Different Temperatures. 98

Figure 82: LM35DV Temperature Measurement Verification. 99

Figure 83: Agent Volume-to-Weight Conversion Verification Setup. 99

Figure 84: Verification of the LLI's Volume to Weight Conversion Algorithm. 100

10

List of Tables

Table 1: LLI Proof of Concept Requirements. .. 21

Table 2: List of Applicable Patents. ... 24

Table 3: FM-200 Density versus Temperature .. 51

Table 4: ROI Center-Point Calibration Calculations. ... 96

Table F- 1: ROI Center-Point Calibration Measurement Data………………………....146

11

Nomenclature

Abbreviations

ATMEGA 328P – Atmel Atmega328P 8-bit AVR Microcontroller with 32K Bytes In-

System Programmable Flash produced by the Atmel Corporation

BUS – A distinct set of conductors carrying data and control signals within a computer

system, to which pieces of equipment may be connected in parallel.

C – Centigrade or Celsius

EEPROM – Electrically Erasable Programmable Read-Only Memory

ESPEC – ESPEC North America, Inc.

FM – Factory Mutual

GUI – Graphical User Interface

HMI – Human Machine Interface

IDE – Integrated Development Environment

ISR – Interrupt Service Routine

LCD – Liquid Crystal Display

LLI – Liquid Level Indicator

LM35 – Family of Texas Instruments Analog Temperature Sensors

LM35DZ – Texas Instruments Analog Temperature Sensor

mm – Millimeters

MSE – Master of Science in Engineering

MSOE -- Milwaukee School of Engineering

NFPA – National Fire Protection Association

OSHA -- The Occupational Safety and Health Administration

12

PC – Personal Computer

POC – Proof of Concept

RGB – Red Green Blue

ROI – Region of Interest

SI – International System of Units

TLX – TLX Technologies

TOF – Time of Flight

UART -- Universal Asynchronous Receiver / Transmitter

UL – Underwriters Laboratories Inc.

USB -- Universal Serial BUS

VL53L1X -- ST Microelectronics Flight Sense Series Time of Flight Sensor

13

Introduction

The purpose of this report is to describe, explain and discuss the results associated

with the author’s Milwaukee School of Engineering (MSOE) Master of Science in

Engineering (MSE) capstone project. The purpose of the capstone project was to design

a Time-of-Flight (TOF) sensor-based liquid level indicator/sensor (LLI or LLS) to

measure fire suppression agents in pressurized storage cylinders associated with clean

agent fire suppression systems.

This project is a future development project for TLX Technologies [1]. The

development team is made up of Patrick Schwobe (Mechanical Engineer), Brett Berger

(Drafter), and Ian Stumpe (Electrical/Test Engineer and author). The author’s area of

responsibility includes the design of the sensor and control circuit, the development of the

control and user interface software, and testing of the device. Other aspects of the project

such as float, tube assembly and enclosure design are addressed as they relate to the

author’s area of responsibility.

TLX Technologies [1] is a custom solenoid and valve manufacturer, and one of

the leading suppliers of fire suppression actuators to fire suppression system

manufacturers [1]. Through TLX’s reputation in the fire suppression actuator market, a

fire suppression system manufacturer contacted TLX to develop a LLI to replace the

existing Dip Tape LLI (see Figure 1) used in their systems. This project offers TLX

Technologies an opportunity to not only diversify, but also to expand its business because

of a significant market for LLIs in the fire protection industry. The market demand just

for that single manufacturer was 10,000 units per year, representing growth in sales of

over $500,000 per TLX Technologies [1].

14

Figure 1: Dip Tape Liquid Level Indicator [2].

 Beyond the business case, there is a need to replace the current Dip Tape LLI due

to multiple deficiencies in its design. Firstly, the device relies on a human operator to

make the distance measurement, by reading the measurement from the graduated tape [3].

Thus, the accuracy of the device can be significantly affected by a Parallax Error

introduced by the operator. Parallax Error is the apparent shift in an object’s position as

it is viewed from different angles, so if the operator’s eye is not directly above the

15

measuring tape, significant error could be introduced into the measurement [4]. Not only

is the accuracy of the measurement affected by the operator, but also the repeatability of

the measurement. The repeatability of the measurement is affected by the operator due to

the need for the operator to manually pull the graduated tape out of the tube until the

operator feels the magnetic pull between the magnet on the graduated tape and the

magnet embedded float as shown in Figure 1 [3]. Because of these issues, it makes it

almost impossible to detect a 5% loss of agent in the cylinder, which is a National Fire

Protection Association (NFPA) requirement [5]. Additionally, the device forces the

operator to determine what the ambient temperature of the fire suppression agent is

because no onboard temperature sensor is configured on the device. This is an issue

because the density of the agent is highly dependent on temperature. Therefore,

depending on where the operator measures the ambient temperature, the result may not

match the actual temperature of the agent. This will cause the operator to use the wrong

temperature curve on the manufacturer-supplied look-up table (Figure 2), giving the

operator the wrong weight measurement. This in turn could lead to the operator

replacing an otherwise good tank. On the other hand, these issues could cause the

operator to miss a faulty tank, leading to a fire suppression system that no longer has

enough agent to extinguish a fire, which is a significant safety issue.

Another deficiency of the Dip Tape LLI is that taking a measurement is time

consuming. The operator needs to remove the protective cover that covers the tape, take

the measurement, find the lookup table (see Figure 2) that corresponds to that specific

tank size for that specific system and use the correct curve (curves are based on agent

temperature) to determine the weight of the agent [6]. In addition, there are usually only

16

three different temperature curves on many of the system manufacturer-provided lookup

tables, so if the current ambient temperature is not one of those curves, the operator must

make an educated guess as to what the actual weight is.

Figure 2: Sample Lookup Table that Converts Liquid Level to Weight [7].

 Because of the deficiencies with the Dip Tape LLI and no market available

alternative, a new device needed to be designed. This new design replaces the graduated

tape with a Time-of-Flight (TOF) sensor and an internal magnet embedded float. The

internal float interacts with the external magnet embedded float, allowing the TOF sensor

17

to measure the height of the agent as shown in Figure 3. TOF sensors are an optical-

based technology that transmit a cone-shaped beam of photons from an emitter and

measure the amount of time taken for those photons to bounce back to the receiver [8, 9,

10].

Figure 3: Magnetic Trap Suppression Tank Level Sensor Patent WO2020/112241A1 [11].

Additionally, the new design incorporates a temperature sensor so that the device can

automatically calculate the weight of the agent. This design removes the need for the

operator to use look-up tables (Figure 2). Furthermore, this new device incorporates an

18

LCD display, a human machine interface, time-of-day clock, push button and internal

non-volatile memory. The components of the new LLI device are shown in a block

diagram in Figure 15. These components will be discussed in greater detail in the

Methods section of this report.

Background

Clean Agent Fire Suppression Systems

Clean Agent Fire Suppression Systems are fire suppression systems that use an

electrically non-conductive, volatile, or gaseous agent that does not leave a residue upon

evaporation [12]. There are multiple clean agents used in this class of fire suppression

system. For this project, FM-200 and 3M Novec 1230 systems are the focus because

both agents are compressed liquids [12]. Clean Agent Fire Suppression Systems have

been in use since 1994 because of the phasing out of halogenated agents due to the

detrimental effect of halons on the environment [13, 14]. Because Clean Agent Fire

Suppression Systems are a direct replacement for Halon Clean Agent systems, they are

typically used in high value buildings, such as telecommunication, data centers, process

control rooms, medical facilities, museums, and libraries. The systems themselves are

specifically tailored to whatever they are protecting so no system is the same. They are

all made up of the same components, as shown in Figure 4, but the number and layout of

these components are dependent on the application. This is especially true when it comes

to the number of Agent Storage Containers, where the number of tanks can vary

depending on the size of the protected area. This affects the number of LLIs in the

system (each tank will have an LLI). As a matter of fact, there is a field of engineering

19

devoted to fire protection and the design of these systems. A good reference source for

designing these systems is the SFPE Handbook of Fire Protection Engineering [15].

Figure 4: Clean Agent Fire Suppression System Equipment [16].

 For Clean Agent Fire Suppression Systems, there are several industrial safety

regulations and compliance agencies. These agencies are established by federal

governments and by private organizations. An example of a government-based agency is

the United States Department of Labor’s Occupational Safety and Health Administration

(OSHA). Examples of private organizations include UL Solutions (UL), the National

Fire Protection Association (NFPA), and Factory Mutual (FM). So, what is the

difference? Typically, the adherence to government-based agency codes, standards, and

requirements is required by law, whereas the adherence to private organizations is

voluntary. However, in some cases, those government agencies will adopt private

organizations’ codes, standards, and requirements instead of creating their own. For

example, OSHA has adopted several codes from the NFPA. Another difference between

20

the agencies is the agency’s scope. For instance, OSHA covers all the safety

requirements that a company must follow to keep their workers safe, whereas the NFPA

sets the standards for the fire protection related systems that those individual companies

will install in their facilities [17]. In the case of UL and FM, these agencies cover the

requirements for the individual components that make up those systems.

The standards that pertain to the TOF sensor based LLI are NPFA 2001, FM

5600, and UL 2166. NFPA standard 2001 requires that if an agent storage cylinder

shows a loss in agent quantity (weight) of more than 5%, the cylinder must be refilled or

replaced [5]. Standards FM 5600 and UL 2166 point to the NFPA 2001 standard and

require that LLIs as they pertain to fire protection systems must accurately indicate the

quantity of clean agent stored in an agent storage cylinder to within a tolerance of ±2.5

percent [18, 19]. In addition to those requirements, UL standard UL 864 Control Units

and Accessories for Fire Alarm System also applies due to the device being an accessory

for fire suppression systems [20]. Per the UL 864 standard, all accessories that are in

outdoor wet locations are tested at -40°C to 66°C. This standard was chosen because it is

the most stringent regarding operating temperature, and from an application point of

view, it is unknown if the device will be kept in an outdoor wet location. Using these

standards and operational requirements for FM-200 and 3M Novec 1230 Clean Agent

Fire Suppression Systems, the device requirements shown in Table 1 were chosen. Table

1 summarizes the proof of concept – or evidence – demonstrating that the project device

is feasible.

21

Table 1: LLI Proof of Concept Requirements.

Liquid Level Indicator Requirements

Parameter
Min

Value

Nominal

Value

Max

Value
Units Tolerance

Weight of Agent

Accuracy
 % ±2.5

Operating Pressure 25 (363) or

35 (508)
50 (725) bar (psi) +35 (508)

Burst Pressure 105 (1523) bar (psi) N/A

Measurement Range

(Distance)
0 2032

(80)
mm(in.)

Operating

Temperature
-40 (40) 66 (151) °C(°F) ±1 (±2)

External Float Density < 1 (0.58) g/ml

(oz/in^3)

 The existing LLI technology that is used in Clean Agent Fire Suppression systems

is very limited. The only type that is currently in use is the Dip Tape LLI pictured in

Figure 1. However, there are several different liquid level sensing products available on

the market. These products utilize a range of different technologies, but they all fall into

four different categories, including single point level, continuous level, multi-point level

and visual level indicators [21]. The current Dip Tape LLI belongs to the visual level

category, and it is the only type the author could find on the market to be certified for use

in Clean Agent Fire Suppression system cylinders. The author did find others that are

certified for use in water-based fire suppression sprinkler systems. Figure 5 shows the

variety of LLIs that are currently available. All the different LLI technologies that are

shown in Figure 5 are discussed in further detail by Hunt [22].

22

Figure 5: Available Liquid Level Sensors [23].

 The following is a brief description of Capacitive, Ultrasonic and Optical based

sensors, based on Hunt [22].

Capacitive sensors can measure point or continuous levels. The device acts like a

capacitor with the liquid as the dielectric, where the output capacitive/resistive values are

conditioned and converted to analog signals. Hunt [22] indicates that capacitive sensors

are suitable for use with liquids, pastes, and some solids.

Ultrasonic sensors are used for measuring liquid level, and are split into two

categories, contact and non-contact [22, 23]. Contact type sensors are typically used in

pipes or vessels to operate pumps, solenoid valves, and high/low alarms, and to measure

liquid levels at a certain point. The ultrasonic signal passes across a small gap filled by

the target liquid. If this level falls below a set level, the signal attenuates and switches a

relay. In the case of the non-contact type ultrasonic sensor, the echo from the ultrasonic

beam reflects off the liquid surface and returns to the sensor where it measures the time it

took for the sound reflections to return, converting it to distance [22, 23].

23

Optical liquid level sensors like the one in this capstone project device use visible,

infrared, or laser light [22]. They measure the liquid level the same way the non-contact

ultrasonic sensor does. The sensor transmits the light and measures the time it takes for

photons to reflect off the surface of the liquid. These sensors can also be contact or non-

contact point type sensors [22].

Time-of-Flight Sensors

 Time-of-Flight (TOF) sensors are optical sensors that use the time-of-flight

principle to determine the distance to an object. The time-of-flight principle is a method

for measuring the distance between a sensor and an object, based on the time difference

between the emission of a signal (in this case infrared light) and its return to the sensor,

after being reflected by an object [10]. These sensors fall into two different categories,

direct and indirect. The direct type sends out short pulses of light that last a few

nanoseconds and then measure the time it takes for some of the emitted light to bounce

back. The indirect type sends out a continuous, modulated light and measures the phase

of the reflected light to calculate the distance to an object. Both direct and indirect TOF

sensors are used in a range of applications, including robot navigation, vehicle

monitoring, people counting, and object detection. In the case of object detection, these

sensors not only detect solid objects, but they can also detect liquids such as water.

Examples of these sensors being used to detect the level of liquids would be in coffee

machines, soap dispensers, and smart toilets [8]. A specific example that utilizes the

pulsed time-of-flight principle is the high-accuracy liquid level meter prototype created

by Matta [24]. This liquid level gauge was developed for measuring liquid level

accurately at distances up to 30 meters. The system consists of an optomechanical sensor

24

head and electronics unit connected via two optical fibers [24]. Another example is the

optical system that was developed to detect the volume of a liquid medical sample in

labeled test tubes Liu [25].

Review of Literature

There are several patents that use these different LLI technologies for different

applications -- some for the fire protection market and others for applications outside of

the fire protection market. The patents shown in Table 2 feature a mixture of

applications, both fire protection and others. These patents and their applications are

discussed over the next few paragraphs, starting with the non-fire protection applications,

then moving on to cover the fire protection applications. It is additionally considered

how they apply or do not apply to the new LLI design featured in this capstone project.

Table 2: List of Applicable Patents.

Paten Number Inventor

US5585786A Clark Reece R et al. [26]

WO82/04316A1 Fraser Gordon Bryce [27]

KR20150004237U Lee, Kyung Mi [28]

CN105486382A Chen Jianwen et al. [29]

EP3722757A1 Chan, Eric Y et al. [30]

CN206772394U Qu Fuping [31]

DE202016006955U1 Liverani Maurizio [32]

WO2020112241A1 Piech Marcin et al. [33]

WO2020/112218A1 Piech Marcin et al. [11]

The first patent to be discussed is patent number US5585786, “Optical Tank-

Level Gauge”, invented by R.R. Clark and G.C. Barmore, Jr, shown in Figure 6 [26].

The application of this specific device is for use in large tanks such as barge tanks or

railway car tanks.

25

Figure 6: Optical Tank-Level Gauge Patent US5585786 [26].

The invention consists of an optical read head (45), a cylindrical gauging rod (35) that

has alternating reflective and non-reflective stripes covering the length of the rod

connected to a cylindrical magnet (36), and float magnet (33), which moves up and down

with the level of the liquid. As the liquid level decreases or increases, the float magnet

moves with the liquid level. Because the float magnet (33) is magnetically coupled with

the cylindrical magnet (36), the gauging rod (35) moves up or down with the liquid level.

As the gauging rod moves, the optical read head determines the liquid level using a

quadrature encoder. The quadrature encoder provides the ability to count transitions on a

pair of digital signals. The signals are positioned 90° out-of-phase, which allows for the

detection of direction and relative position. In conjunction, with a third index signal, an

absolute position can be established [34].

26

 The “Fluid Level Indicator” patent number WO82/04316A1, invented by G.B.

Fraser, uses laser beam interferometry to determine the fluid level [27]. Laser beam

interferometry is a distance measurement technique done by splitting a laser beam into

two, sending each of the two beams along different directions in space and then

recombining the beams. If the beams travelled the same distance, the detector would see a

recombined beam of the same brightness as the original beam, or nothing at all,

depending on how the detector is set up [35]. The invention is shown in Figure 7.

Figure 7: Fluid Level Indicator Patent WO82/04316A1 [27].

The invention consists of a tube (1), a reflector (5), float (6), laser (10), and an

interferometric detector (11). The transmitted light from the laser (10) is reflected by the

reflector (5), which is affixed to a float (6) that is at the same height as the liquid level.

The reflected light is then captured by the interferometric detector (11) where electronic

circuitry determines the position of the reflector (5). The application for this LLI is for

use in large tanks such as those used on tanker trucks [27].

27

 The next invention falls into the single point level type of LLI. It is for a “Water

Level Sensing Apparatus,” patent number KR20150004237U, invented by K.M. Lee

[28]. This invention is used to control the flow of water into a water tank. As shown in

Figure 8, the invention consists of a vertical pipe (110), linear hall sensor (120), a metal

rod (130), a magnet embedded float (150, 140), and tank (200). As water flows in or out

of the tank (200), the magnet embedded float (150, 140) rises or lowers with the water

level. The magnetic field created by the embedded magnet of the float interacts with the

metal rod (130), causing the magnetic flux to increase or decrease. This increase or

decrease in the magnetic flux is measured by the linear hall sensor (120), which is then

interpreted via a microcontroller to determine the height of the water. The controller will

turn the water supply on or off depending on the water level.

Figure 8: Water Level Sensing Apparatus Patent KR20150004237U [28].

 Patent CN105486382A shown in Figure 9 was invented by Chen Jianwen [29].

The invention is a continuous level type LLI that uses a magneto-strictive sensor (2) to

sense the position of the magnetic float (1). A magneto-strictive sensor is a wire or bar

28

referred to as a waveguide that is typically made of an iron alloy. Short pulses of current

are applied to the waveguide causing a magnetic field to be formed. This field and the

magnetic field of the magnetic float interacts causing a torsional strain the Wiedemann

Effect. This strain is then detected by a signal converter that can determine the exact

position of the float and thus the liquid level [36].

Figure 9: Magneto-strictive Liquid Level Patent CN105486382A [29].

 As shown in Figure 10, patent EP3722757A1 invented by Eric Y Chan and Denis

G Koshinz uses a type of TOF sensor to sense the level of liquid fuel in a fuel tank [30].

The Non-Contact Time-of-Flight Fuel Level Sensor Using Plastic Optical Fiber utilizes a

non-contact plastic optical fiber (POF) (14) to optically sense the level of fuel (2) in a

fuel tank (10). It further consists of a high-speed and high-power red laser diode (28),

and an ultra-high-sensitivity photon-counting avalanche photodiode (32). The fuel level

is sensed when the avalanche photodiode (32) first detects the light reflected by the POF

29

end face (1) and then detects the light reflected by the fuel surface (3) in response to the

emission of a laser pulse (18) by the red laser diode (28). A time delay detection circuit

(30) calculates the time interval separating the respective times of arrival. This time

interval is used by the fuel level calculator (34) to calculate the fuel level.

Figure 10: Non-Contact Time-of-Flight Fuel Level Sensor using Plastic Optical Fiber Patent

Number US5585786 [30].

 The next set of patents deal with inventions that are meant to be used in fire

suppression systems. This first patent, shown in Figure 11, the Liquid Extinguisher Steel

Cylinder LLI, was invented by Qu Fuping [31]. It is a single point level type of LLI

using reed switch technology. As the magnet embedded float (6, 5) drops due to the

liquid level decreasing caused by the loss of fire suppression agent, the magnetic field of

the float interacts with the reed switch (4) causing, it to close. This action completes the

alarm circuit (7), initiating an alarm, denoting that there is an issue with the agent storage

tank.

30

Figure 11: Liquid Extinguisher Steel Cylinder LLI Patent CN206772394U [31].

 Patent DE202016006955U1, invented by Liverani Maurizio, was designed to be

used in flammable liquid storage tanks [32]. This device, which is shown in Figure 12, is

an example of a continuous level ultrasonic type LLI. In this invention, sound waves

generated by the receiver/generator (10) spread along the conductor (11). Once the sound

waves reach the float (18) and magnet (19), which are at the height of the liquid, they are

reflected to the receiver/generator (10). Data from the receiver are then interpreted by

electronic circuit (17) to determine the height of the liquid. Additionally, a temperature

sensor that is at the bottom of tube (2) transmits fluid temperature data to the electronic

circuit (17). Using the height and temperature data, the invention will set off an alarm

based on pre-determined limits.

31

Figure 12: Flammable Liquid LLI Patent DE202016006955U1 [32].

 The last two patents listed in Table 2, WO2020112241A1 and WO2020/112218A1,

were invented by Piech et al. [11, 33]. The application for both inventions is for use in

fire suppressant storage tanks and both are continuous level type LLIs. Additionally,

both inventions are alternatives for the Dip Tape type LLI that is currently used.

Unfortunately, it appears that neither are currently available on the open market. Even

the patent owner, Carrier Corporation, does not advertise these LLIs.

Patent WO2020112241A1 shown in Figure 13 consists of multiple magnetic field

sensors (152) arranged on a carrier (150) that measure the magnetic field of the magnet

embedded float (120). An electronics module (166) interprets the magnetic field data

from the magnetic field sensors (152) to determine the height of the liquid level. This

design idea was a contender for the author’s capstone project. However, after some

further research, it was learned that the number of magnetic field sensors required to

make the device accurate enough was cost prohibitive. Additionally, the coding required

32

to correctly interpret the magnetic field data provided by the sensor would have been far

too complicated. So, the idea was scrapped.

Figure 13: Adaptable Suppression Tank Level Sensor Patent WO2020/112218A1 [33].

 That leads to the second patent by Piech et al. [11], WO2020/112241A1, the

“Magnetic Trap Suppression Tank Level Sensor”, shown in Figure 14. The key design

element in this invention is that it incorporates a two-float design, including an inner float

(128) embedded with a magnet (124) that is coupled with an external float (120) that

features embedded magnets on the top (130) and bottom (132) of the float. With this

trapped inner float design, several different linear displacement sensor technologies can

be used to determine the height of the liquid. This is pointed out in the claim section of

33

the patent where it calls out several technologies. These technologies include magnetic

field sensors (Hall Effect sensors) or magnetic switches (reed-switches), radar-based

sensors, as well as resistance, ultrasonic, and optical sensors, such as the TOF sensor

featured in this author’s device [11]. Several searches using Google, Google Scholar, and

Milwaukee School of Engineering library’s Summon Discovery Service found no

scholarly articles nor a market example of the patent’s proposed device, which is similar

to the author’s design.

Figure 14: Magnetic Trap Suppression Tank Level Sensor Patent WO2020/112241A1 [11].

 As discussed, there are several different LLI technologies that are available on the

market. However, these commercially available technologies are not suitable for use in

34

Clean Agent Fire Suppression storage cylinders due to the system design requirements

required by regulatory agencies such as OSHA, NFPA, FM and UL. Additionally, the

cost of these technologies such, as the proposed design in patent WO2020/112218A1,

prevents these technologies from being adopted for use in Clean Agent Fire Suppression

storage cylinders. This review of literature further shows that even though there is a

patent that outlines the general idea of the author’s design, that design has not been made

commercially available [11]. Additionally, that patent pertains to the configuration of the

external float (uses two magnets to capture the inner float) and not to the technology used

to detect the inner float [11].

Methods

 The purpose of this MSOE MSE capstone project is to design a new LLI to

replace the Dip Tape LLIs used in Clean Agent Fire Suppression Systems. This new

design replaces the graduated tape and magnet (see Figure 1) with a TOF sensor and

magnet embedded inner float, as seen in Figure 14. To accomplish this goal, a

microcontroller was added to interpret the distance data from the TOF sensor and to

perform the calculations required to convert the distance measurement into a weight. To

make these calculations, the microcontroller also needs to know the temperature of the

agent because the densities of FM-200 and 3M-Novec 1230 are dependent on

temperature, so a temperature sensor was added to the design. Additionally, the device

needs a display to show the calculated weight measurement and a Human Machine

Interface (HMI) so that important information could be entered into the device, such as

the measurements of the storage tank, type of agent, and data capture settings. Because

35

of the need for an HMI, additional non-volatile memory is necessary to store device

settings. Adding the non-volatile memory would also allow the device to become a data

recorder, allowing for all measurement data to be stored and analyzed if a failure in the

tank occurs. However, to accommodate the data recording feature, a time-of-day clock is

needed so that each data point will feature an accurate timestamp. A block diagram of

this Proof-of-Concept (POC) design is shown in Figure 15.

Temperature
Sensor

TI Instruments LM35

Controller

Time of Flight
Sensor

ST VL53L1X

I2C Interface

USB

Power Source

HMI
System Settings

(Tera Term)

Non-Volatile
Memory

No Preferred
Interface

16x2 LCD Display
Adafruit RGB LCD Shield

I2C Interface

Push Button
No Preferred

Interface

Analog Output

Time-of-Day Clock
No Preferred

Interface

Figure 15: Proof-of-Concept Sensor Design.

Phase One Development

Phase One of this project entailed the building of a proof-of-concept unit that

could be used in verifying whether the selected TOF sensor would work in this

application. The selected TOF sensor was the ST Microelectronics Flight Sense series

VL53L1X. This sensor was selected for several reasons, including its resolution of

±1mm, its repeatability of ±0.15% to ±1%, its range of four meters, its programable range

36

of interest, and its pre-developed software library [37]. Because of the sensor’s pre-

defined software library, several sources are available that offer VL53L1X sensor

development boards. A sensor development board is a printed circuit board used for

embedded system development, including a series of hardware components, such as

central processing unit, memory, input device, output device, data path/bus, and external

resource interface [38]. The VL53L1X development board that was selected for this

project is the SparkFun Qwiic Distance Sensor (VL53L1X) Breakout. This device was

selected because an Arduino Software Library is available [39] that would render coding

much easier because of the author’s prior experience with Arduino development boards.

The development board’s compatibility with Arduino also led to the selection of the

Arduino Uno development board for the microcontroller (ATMEGA328P

microcontroller) [40, 41]. For the temperature sensor, the Texas Instruments LM35 was

selected because of its accuracy of ±1°C, its linearity, and its temperature range of -55°C

to 150°C [42]. The last component that was required for this phase was a display device.

For the display, the Adafruit Learning System RGB LCD Shield was selected. Like the

sensor development board, this development board was selected because it features a

developed Arduino library (Adafruit RGB LCD Shield) [43].

 With the components selected, parts could be ordered and the first POC units

could be built. Figures 16 through 18 show the assembled POC in its enclosure that was

designed by Brett Berger. Figure 19 shows the assembled POC on a mock agent storage

cylinder. The tube assembly that the POC sits on was designed by Patrick Schwobe,

along with the external and internal float. Drawings of these are shown in Appendix G

through I.

37

Figure 16: TOF LLI Sensor Unit Side View.

Figure 17: TOF LLI Sensor Unit Bottom View Showing VL53L1X Sensor.

38

Figure 18: TOF LLI Sensor Unit Internal View Showing Arduino UNO and LM35.

Figure 19: TOF LLI Full Assembly.

39

Phase Two Development

With the POC assembled, the next phase entailed writing the software the

Arduino UNO microcontroller needs to communicate with the TOF sensor and

temperature sensor and display the distance and temperature data on the LCD. This

revision of the code would serve three purposes: one, to demonstrate that the TOF sensor,

temperature sensor and LCD function correctly; two, to verify the accuracy of the TOF;

and three, to verify the accuracy of the temperature sensor. This revision of the code is

shown in its entirety in Appendix A and is discussed in further detail in the following

paragraphs.

 There is one observation that needs to be noted about the code before it is

discussed in further detail. That is that as the reader reviews the code in Appendix A, it

will be seen that some lines of the code fall in between these /* */ and follow behind two

forward slashes (//) as shown in Figure 20.

Figure 20: Source Code Section One.

All words that follow the forward slashes or sit between /* */ are comments and are not

part of the actual code. Their purpose is to explain what that line or section of code does.

For example, the snippet of code shown in Figure 20, which is the first 13 lines of code

that is shown in Appendix A, shows the header of the code lines 1 through 8, which lay

40

between /**/. The point of the header is to give general information about the code. In

this case, it gives a brief description about what the code does, who authored it, when it

was created, and if there is any licensing or copyright information. Also shown in that

figure, on lines 10 through 13, are the included software libraries. These libraries provide

the background code and subroutines that allow the code to function properly. Without

them, the code that follows would not function and would not be recognized by the

Arduino’s programming language compiler. The compiler is a special program that

translates the programming language’s source code (the text shown in Appendix A) into

code that the microcontroller can understand. The included libraries are the

“SparkFun_VL53L1X.h”, which provides the functionality to interface with the

SparkFun VL53L1X development board; “Wire.H”, which provides the functionality

required to communicate with I2C devices; “Adafruit_RGBLCDShield.h”, which

provides the functionality to interface/control the LCD display; and “avr/sleep.h”, which

provides the functionality to control the microcontroller’s sleep modes.

 Section Two of the code, which is shown in Figure 21, shows lines 15 through 28

of the code. The code shown on line 16 enables the microcontroller to communicate with

the LCD display via its I2C interface.

Figure 21: Source Code Section Two.

41

Lines 19 through 27 denote constant values and the names associated with that value.

These are used later in the code to determine the color of the LCD backlight.

 The next section of code shown in Figure 22 covers the initialization of the

VL53L1X TOF sensor, non-constant variables, and the setup function. Like line 16 in

the previous section, line 29 enables the microcontroller to communicate with the

VL53L1X TOF sensor. Lines 32 and 33 establish the global variables “val” and

“tempPin”; global variables are used by the microcontroller to store information used to

by the program. The variable “val” is used to store the raw temperature value from the

microcontroller’s analog to digital converter (ADC). The ADC converts the analog

voltage that is measured on the “tempPin” (microcontroller’s analog input A0 pin) to a

digital value between 0 and 1023. This analog voltage is the output from the LM35

temperature sensor. Next in this section of code is the “setup” function. In this function

Figure 22: Source Code Section Three.

42

are the commands that set the basic settings for the hardware connected to the

microcontroller. Line 38 initializes the microcontroller’s I2C communication BUS so it

can transmit commands and receive information from the TOF sensor and LCD display.

Lines 39 and 40 turns the LCD display on, tells the microcontroller that it is a 16x2 (16

columns, 2 rows) display and sets the backlight of the display to white. This variable

name should look familiar as it was defined in source code Section Two and represents

the value for the color white, which is hexadecimal value of 7. The next line of code, line

42 initializes the microcontroller’s serial BUS, which is another communication BUS like

I2C, but this communication BUS is used to communicate with the PC. It is mainly used

by the programmer to see if the program is running correctly. For example, the line of

code on line 47 and 50 tell the microcontroller to transmit information telling the

programmer that it was either able to or not able to communicate with the TOF sensor.

This leads to the last few lines of this section of code, which deal with verifying that the

microcontroller can communicate with the TOF sensor and setting the sensor up. Line 45

of the code tells the microcontroller to verify that it can communicate with the TOF

sensor. The lines of code shown on lines 52, 55 and 58 set the Region-of-Interest,

Timing Budget, and the Distance Mode of the TOF sensor. These settings are discussed

in greater detail in the following sections of this report.

The last two sections of this program, shown in Figures 23 and 24, show the

“loop” function, which is where all the action takes place. The code in this function is

continuously run by the microcontroller. It contains the code that tells the TOF when to

take distance measurements, when to stop taking distance measurements, calculates the

43

average of the distance measurement, takes ambient temperature readings, and transmits

the distance and temperature data to the display.

Figure 23: Source Code Section Four A.

Figure 24: Source Code Section Four B.

Before the accuracy of the TOF could be tested, the author needed to verify the

optimum settings for the VL53L1X TOF sensor that would allow for the most accurate

measurements. These settings are associated with the sensor’s Region-of-Interest (ROI),

Timing Budget, Inter-Measurement Period, and Distance Mode. Of these settings, the

most influential is the ROI. The ROI determines the size and position of the receiving

array, thus allowing the Field-of-View to be reduced from 27° to 15°, as shown in Figure

25.

44

Figure 25: VL53L1X Field-of-View at 27° (Pink) and 15° (Blue) [44].

This receiving array is made up of 256 Single Photon Avalanche Diodes (SPAD) that

form a 16 x 16 grid, which is shown in Figure 26. However, the size of the array is

programable all the way down to a 4 x 4 grid. Because of this feature, the location of this

ROI is also programable. Because the sensor needs to detect a float located in a 0.436-

inch diameter tube, the size of the ROI was set to a 4 x 4 grid. However, the optimal

location of the grid was an unknown.

Figure 26: VL53L1X 16x16 SPAD Receiving Array [44].

45

The Timing Budget setting, like the location of the ROI, was another unknown. The

Timing Budget sets the time required by the sensor to perform one range measurement,

with the minimum being 20ms and the maximum being 1000ms [45]. However, this

setting was limited to 15, 20, 33, 50, 100, 200, or 500ms in the SparkFun Arduino

software library [39]. The Inter-Measurement Period determines the period between each

range measurement. This setting was left at its default setting of 100ms [36]. Unlike the

ROI and Timing Budget settings, the final setting -- the Distance Mode -- was easy to

determine. There are three options for this setting, including Short, Medium (not

implemented in the Arduino Library [39]), and Long. Each setting has its own maximum

measurement range, with Short being 1.3m and Long being 4m. Since the tube assembly

was less than 0.4m long, the Short Mode was selected.

 To determine the two unknown settings -- the location of the ROI and the Timing

Budget -- the ROI Calibration code was written. This code, which is in shown in

Appendix B, automates the process of determining the optimal ROI location by scanning

through each of the 256 center points to determine if the measurement is within ±1mm of

a set distance. The first section of this code is shown in Figure 27, and it includes the

required software libraries needed to operate the VL53L1X TOF sensor and the

microcontroller’s I2C communication BUS (lines 1 and 2). These two libraries were used

in the previous code so they should look familiar. Following the libraries, line 4 of the

code initializes the TOF sensor and lines 10 through 12 are the variables used in the

program to store information. Two of these variables should look familiar -- those are

“val” and “tempPin”, which again are used for the same purpose. However, it is the third

46

variable on line 12, “ROIcent”, which is very important. This variable holds the ROI

center point that is used in the “setROI” command used later in this code.

Figure 27: ROI Calibration Source Code Section One.

 Section Two of the ROI Calibration Code contains the “setup” function, which is

similar to the “setup” function used in the previous code. However, this time around, the

function does not contain the commands that set the ROI, Timing Budget, and Distance

Mode. The rest of the function is the same as the one used in the previous code and is

shown in Figure 28, so it still initializes the I2C and Serial communication BUS(s) and

initializes the TOF sensor.

Figure 28: ROI Calibration Source Code Section Two.

47

 Like the previous code, the next section shows the “loop” function. As stated

before, the “loop” function is run continuously by the microcontroller. The commands

that set the ROI, Timing Budget and Distance mode were moved from the “setup”

function to this function, as shown in Figure 29. This was done so that each time the

microcontroller ran this code, it would reset the ROI, Timing Budget, and Distance Mode

settings of the TOF. This allows the program to scan through all 256 ROI center points.

This portion of the “loop” function also contains the “for” loop that allows for multiple

distance measurements to be taken so that an average distance could be calculated.

Figure 29: ROI Calibration Source Code Section Three A.

The rest of the “loop” function is shown in Figure 30. Like the previous code, Section

Three B shows the commands used to calculate the average distance line 57, and the

command used to stop and reset the TOF sensor. What is different are the two “while”

loops. The first “while” loop shown on lines 61 through 67 tell the microcontroller that if

the distance measurement is within 1mm of the set distance (in this case, the set distance

48

is 202mm) to transmit via the Serial BUS that the ROI center point is good and what that

center point is. That ROI center point is then incremented on line 74 of the code, which

adds one to the “ROIcent” variable. This continues to happen until the “ROIcent”

variable reaches 255, which is when the second “while” loop on lines 69 through 72 stops

the program and has the microcontroller transmit stop via the Serial BUS so that the

author would know that all ROI center points have been scanned.

Figure 30: ROI Calibration Source Code Section Three B.

This calibration program was run at six different positions -- 102, 152, 202, 252, 301, and

352mm -- with the Timing Budget set to 50, 100 and 200ms. The calibration process

determined that the optimal ROI location was at grid position 230, shown in Figure 31,

and the optimal Timing Budget was 200ms. The data captured through this calibration

process are presented in the Results section.

49

Figure 31: VL53L1X Receiving Array ROI Setting.

 With the optimal TOF settings determined, the accuracy of the TOF and temperature

sensor could be tested. This test was conducted at three different temperatures -- 0°C,

23°C and 49°C -- using an ESPEC environmental chamber located at TLX Technologies.

At each temperature, distance measurement readings were recorded at three different

positions and the average of the readings was compared to the actual distance

measurement. This same technique was used to test the temperature sensor. The results

of this testing are covered in the Results section. For further testing details, see the MSE

Capstone LLI Test Plan in Appendix C.

Phase Three Development

With Phase Two complete, the next phase of the project was to further develop

the LLI’s firmware by adding an algorithm that converts the distance measurement from

the TOF sensor and the temperature sensor into a weight. This algorithm uses two

50

equations to convert the distance measurement into a weight. Equation (1) is used to

calculate the volume of the liquid in the storage cylinder:

𝑉 = 𝜋 ∗ (𝑟 − 𝑡)2 ∗ (ℎ − 𝑑), (1)

where V, the volume of the liquid, equals the squared quantity r, the radius of the

cylinder, minus t, the thickness of the cylinder walls, times the quantity, h, the height of

the cylinder, minus d, the distance to the top of the agent. Equation (2) is employed to

calculate the mass of the liquid agent:

𝑚 = 𝜌 ∗ 𝑉, (2)

where m, the mass of the liquid, equals ρ, the density of the liquid, times V, the volume

of the liquid. Density was determined by using linear interpolation that pulled

temperature and density data from two 24-bit arrays. A linear interpolation algorithm

developed by Llamas was employed from the Arduino InterpolationLib library [46].

Linear Interpolation is a method for estimating the value of a function between any two

known values [47]. Equation (3) is employed to perform linear interpolation:

𝑦 = 𝑦1 +
(𝑥−𝑥1)(𝑦2−𝑦1)

𝑥2−𝑥1
, (3)

where x1 and y1 are the coordinates of the first known value, x2 and y2 are the coordinates

of the second known value, x is the value that falls between x1 and x2 where the

interpolated value of y needs to be determined. For example, to determine the density of

FM-200 at 23°C, x is the measured temperature 23, and y is the unknown density value.

To determine y via Equation (3), it is necessary to know what two points that the x and y

values fall between. This can be determined by using the temperature and density data

from Table 3. Table 3 indicates the density of FM-200 at 20°C is 1408.4kg/m3 and the

51

density at 25°C is 1387.7, which serve as the (x1, y1) and (x2, y2) coordinates. This

results in Equation (4):

𝑦 = 1408.4 +
(23−20)(1387.7−1408.4)

25−20
. (4)

Solving Equation (4) gives an interpolated value of 1395.98kg/m3. This interpolated

value can then be entered into Equation (2) to determine the weight of the agent. The

temperature and density data entered in the two 24-bit arrays for FM-200 were pulled

from Table 3.

Table 3: FM-200 Density versus Temperature [48].

For this phase of the project, only one density/temperature look-up table was used. This

was done because the main purpose of this phase was to create an algorithm that

accurately calculates the weight of an agent. If this goal could be achieved with one

agent, it could be achieved with multiple agents. Using this information, the weight

conversion algorithm was created and added to the source code, creating Revision 2.0.

This firmware code is shown in Appendix D. The testing methods used to verify

Revision 2.0 of the firmware are presented in Appendix C and results are discussed in the

52

Results section. There were significant changes made to the original source code that is

shown in Appendix A. The first change on line 15 shown in Figure 32 is the addition of

the “InterpolationLib.h”, which was discussed earlier.

Figure 32: Source Code Revision 2.0 Section One.

Without this library, determining the density of the agent would not be possible without

significant changes to this code. There were no significant changes made to the next

section of code, shown in Figure 33, which is the same as the Appendix A code.

Figure 33: Source Code Revision 2.0 Section Two.

 There were several changes made to the next section of code, shown in Figure 34.

The first of these changes is shown in lines 46 through 62, which is the addition of those

24-bit arrays that hold the temperature and density data for the FM-200 agent and water.

53

The temperature and density data for water were added because it was not possible to test

the LLI with FM-200 nor Novec 1230, which this device is intended to be used with.

The reasoning for this is covered in more detail in the Results section. The other major

change to this section is the addition of three new variables, shown in lines 65 through

67, where they are used to store the dimensions of the agent storage cylinder. These

variables are used later in the program to calculate the volume of agent.

Figure 34: Source Code Revision 2.0 Section Three.

The next section of this code, which covers the “setup” function, saw no changes from

what it was in the original code that is shown in Figure 22. However, the “loop” function

had several lines of code added to it beyond what is shown in Figures 23 and 24. The

first addition to this section on lines 122 to 125 in Figure 35 is the code needed to

calculate the volume of the agent using those new variables described earlier and the

calculated distance to the agent. Additionally, lines 127 through 137 were added to

convert the volume, which is initially calculated in millimeters cubed to either meters

54

cubed, or centimeters cubed, depending on if the agent is FM-200 or water. These

conversions were needed for the chosen microcontroller to correctly calculate the weight

of the agent.

Figure 35: Source Code Revision 2.0 Section Four.

The final addition to the “loop” function is the code shown in Figure 36. This code

determines the density of the agent and the total mass of the agent. Using Equation (3),

the code on line 149 calculates the density for the calculated temperature stored in the

variable “cel”, which is then stored in the variable “density”. This variable is then used

on line 156 to calculate the mass of the agent.

Figure 36: Source Code Revision 2.0 Section Five.

55

Phase Four Development

Phase Four of the project entailed the addition of a pushbutton to the POC and

new firmware that only takes a single measurement when the pushbutton is pressed.

Once power is applied to the unit, the firmware takes one measurement of distance and

temperature, and then displays the information on the LCD for five seconds. Once the

five seconds are up, the LLI goes into a sleep mode. In sleep mode, the LCD is powered

down so much less power is required. Once the button is pressed, the unit wakes up,

initiating a distance and temperature measurement, displaying it on the LCD again for

five seconds and then goes back into sleep mode. This firmware, “LLI Firmware with

Interrupt”, is shown in Appendix E. Compared to the “LLI Firmware Rev 1.0” shown in

Appendix A, the major changes are in the “loop” function, which saw the code to take

distance measurements and temperature measurements move to a new function called

“Going_To_Sleep()”. The first section of this function is shown in Figure 37.

Figure 37: Going to Sleep Function Section A.

56

With this new function comes some new commands -- the first is on line 81, the

“sleep_enable()”, which enables the microcontroller to enter into a sleep mode, which is a

low power mode where the microcontroller disables certain circuitry or clocks that drive

some of its peripheral functions. Depending on the microcontroller, it may have several

different sleep modes that can be deployed. For example, the ATmega328P

microcontroller that is used in this application has three modes all with varying degrees

of power savings; they include Idle, Standby and Power-Down. In this application, the

Power-Down mode is used, which shuts down all peripherals and offers the greatest

amount of power savings. Following line 83, which tells the microcontroller which sleep

mode to enter, the display is cleared, and the backlight is turned off. After a one second

delay (line 87), the microcontroller enters the Power-Down sleep mode. The rest of the

function starting at line 92 through 101, shown in Figure 38, is the same code used to

determine the distance and temperature and to display it on the LCD.

Figure 38: Going to Sleep Function Section B.

57

The last change shown in Figure 38 is the addition of the “wakeUp()” function located on

lines 123 through 127. It is this function that tells the microcontroller to return to normal

operation when the pushbutton is pressed.

Phase Five Development

 Phase Five of the project saw the development and implementation of the LLI’s user

interface. The first step of the development process was determining what the user

interface was going to do. The author determined that the user interface should give the

user the ability to select the agent type (FM-200, Novec 1230 and Water), set units of

measurement (SI or US Imperial), enter the dimensions of the agent storage cylinder, set

the display’s refresh rate (continuous or single), set the data recording interval,

enable/disable data recording, and set the date and time. Following that, it was necessary

to determine how the user would interact with it. There were several options to choose

from such as a graphical user interface (GUI), command line interface (CLI), and a

menu-driven user interface to just name a few. For its simplicity and low resource

requirements, a command line type interface was chosen. Using a universal

asynchronous receiver-transmitter (UART) communications protocol, the CLI would

utilize the Arduino UNO’s Atmega328 microcontroller’s UART to transmit and receive

data to a host device such as a computer or tablet using the Arduino IDE’s built-in serial

monitor or simple terminal emulator program such as Tera Term or Putty. The physical

connection between the host device and the LLI (Arduino UNO) utilizes a standard USB-

A to USB-B cable to connect to the host device’s USB-A port and the Arduino UNO’s

USB-B port (see Figure 18).

58

With the user-interface’s functionality, type, and physical interface determined,

the next step was to develop the code required by the microcontroller to run the user-

interface. The code development process was done incrementally by first developing a

standalone program just for the user-interface. This allowed the author to fully develop

and test the user-interface without having to modify the original LLI firmware shown in

Appendix D. The final version of the standalone user-interface program is the

“Serial_Comms_Rev_5” code shown in Appendix J. The first section of this code,

shown in Figure 39, shows the global variables that store the information entered by the

user. Additionally, a new software library was used, which is the EEPROM.h library.

This library enables the use of the Adruino UNO’s onboard EEPROM chip, which can

store up to 1024 bytes of data. With the addition of this functionality, user entered

settings and mass measurement data can be permanently stored to the device. So, no

settings nor data are lost when the LLI is powered off. The comments detail the

EEPROM address location where the variables are stored.

Figure 39: Section One of the Serial_Comms_Rev_5 code.

59

Section Two of the code covers the “setup()” function of the code. Part A of the

“setup()” function covering lines 20 to 45 is shown in Figure 40. The code on line 20

should look familiar. It is the line of code that enables the microcontroller’s Serial

communication BUS, which was previously used to verify the functionality of the code

so the microcontroller could only output data -- now it will receive data. This

functionality is shown in the remaining lines of Part A. On line 21, the microcontroller is

again outputting data to the Serial BUS, but in this case, it is asking the user a question

and then waits for a response (while loop on lines 23 to 25). The question is, does the

user want to clear the EEPROM, since the program now writes data to the EEPROM the

user needs a way to set the LLI back to its factory settings. Once the user enters ‘1’ or

‘2’, the program stores that value to the variable “Clear”, which is done on line 26. The

value of this variable is then used in the switch case to either clear the EEPROM or to

skip the clear process and continue with the program. If the value of “Clear” is 1, the

program clears the EEPROM by writing zeros to each memory location in the EEPROM.

This is done by the ‘for’ loop on lines 32 to 35. Once that process is done, the program

via the code on line 36 tells the user that the process is finished. If the value of “Clear” is

2, the program via code on line 41 tells the user that the clear process has been skipped.

Once either one of those lines of code is processed by the microcontroller, it continues to

run the program via the “break” commands shown on lines 37 and 42.

60

Figure 40: Section Two Part A of the Serial_Comms_Rev_5 code.

 With the processing of the “break” commands on either of those lines completed,

the microcontroller can now begin to process the code in Part B of Section Two, which is

shown in Figure 41. The purpose of this code is to pull user settings out of the EEPROM.

This is done so that the program can function normally if the power is cycled on the LLI.

To pull these data from of the EEPROM’s memory, the line of code shown on line 47 and

all odd lines of code are used. The EEPROM memory address, which is where the

setting is stored is determined by the value of the variable “eeAddress”, and the data

stored at that address is copied to a variable, which in this case is the variable “Agent”

and the address is ‘0’.

61

Figure 41: Section Two Part B of the Serial_Comms_Rev_5 code.

Section Three of the code covers the “loop()” function, but before that section can

be discussed, Section Four of the code must be covered. Section Four covers the

“devicemenu()” function, which controls the functionality of the user-interface. The

“devicemenu()” function is made up nine sections, the first covers the code that outputs

the main menu for the user to view via the Arduino IDE’s Serial Monitor or similar

terminal emulator program. The first line of code, line 19, shown in Figure 42, declares

the name of the function, which enables it to be called anywhere in the program. This

will be discussed in more detail in Section Three of the code, the “loop” function. Code

used on lines 22 to 29 and 31 transmits the user menu to the host device for the user to

select from. Like the “setup” function, the “while” loop on lines 33 to 35 causes the

62

program to pause until an input is received from the user. Once that input is received, it

is stored in the “menuChoice” variable, where it is used to bring up the submenu of the

selected setting.

Figure 42: Devicemenu Function Section A.

 The other eight sections of the “devicemenu” function cover the submenus for the

eight different settings. As in the “setup” function, a switch case control statement is

used; however, in this case, there are nine cases that make up the switch case. Section B

of the function covers the declaration of the switch case, which is shown on line 39 of

Figure 43 and the control statement’s first case lines 41 to 73. The variable

“menuChoice” determines which case of the control statement is processed. So, if the

user entered a ‘1’, the control statement will process the code in “case 1”, if it was a ‘2’,

it would process the code in “case 2” (Section C), if the user input is an integer 1 through

63

8, the control statement will process the code in the corresponding case. The first case

statement “case 1” allows the user to select the type of agent that is in the agent storage

cylinder whether that is FM-200, Novec 1230 or Water. Like the previous section, lines

45 to 48 transmit the submenu options to the host device for the user to select from, and

the “while” loop on lines 49 to 51 pauses the program until a response from the user is

received. Again, that response is stored in a variable -- in this case the global variable

“Agent”.

Figure 43: Devicemenu Function Section B.

64

As the comments on lines 54 to 56 denote, the value of “Agent” must be an integer

between 1 and 3. If it is not, an error message will be displayed, and the program will

retransmit the Agent submenu. This functionality is controlled by the “if else” control

statement shown on lines 57 to 70. Line 57 verifies that the value stored in the “Agent”

variable is greater than or equal to 1 or less than or equal to 3. If it is, lines 59 to 63 are

processed, which stores the selected agent setting into address 0 of the EEPROM and

transmits back to the user what setting was entered. If it is not an integer between 1 and

3, the code in the “else” control statements is processed in lines 67 to 69. This code

transmits an error message to the user (line 67), sets the “Agent” variable back to zero

(line 68) and directs the microcontroller back to the beginning of the case statement. This

is done using the control statement “goto bailoutA” on line 69, which redirects the

program to line 44. Those “goto” control statements are used in each of the different

switch cases to control user input.

 Section C of the “devicemenu” function covers the second case of the switch

control statement, which handles the submenu for setting what measurement units

(Metric or US Imperial) are used when the mass of the agent and temperature are

displayed on the LCD and what is recorded in the history log when data recording is

enabled. This section of code covers lines 73 to 104, as shown in Figure 44.

65

Figure 44: Devicemenu Function Section C.

After a quick review of this section, the reader should notice some familiar lines of code

and that the overall structure of this section and all subsequent sections of the

“devicemenu” function’s switch case control statement are the same. The first few lines

transmit the submenu to the user terminal, the program then waits for a user input, that

user input is then stored in a variable -- in this case the global variable “Units” -- the

contents of that variable are then checked, and if the contents are within the requirements

(in this case either a ‘1’ or ‘2’), the setting is saved to the EEPROM. Otherwise, the

variable is set back to zero, the program transmits an error message and then re-transmits

the submenu.

66

 As noted, the overall structure of these different “case” statements is relatively the

same; the program transmits the submenu, waits for user input, stores that input…. etc. In

the case of Section D, shown in Figures 45 and 46, this structure is repeated using an “if

else” control statement.

Figure 45: Devicemenu Function Section D.

This control statement is used to determine which measurement units were selected by

the user and based on that selection, the code directs the user to enter the dimensions of

the storage cylinder in either millimeters or inches. The code shown in Figure 45 is

processed if the user selected metric units, and the code in Figure 46 on lines 147 to 185

is processed if the user selected SI units. The last few lines of code -- lines 187 to 190 --

are processed only if the user did not set the units setting prior to selecting the “Cylinder

67

Dimensions” submenu. In this case, the “goto” statement redirects the program to the

“Measurement Units” submenu.

Figure 46: Devicemenu Function Section D Continued.

 The next three sections of code -- sections E, F and G -- are shown in Figures 47,

48 and 49. The overall structure of these sections of code is the same as Sections B and

C, with no real differences like in Section D, except for what global variable is used to

68

store the input from the user. Section E of the code, shown in Figure 47, covers the

submenu for setting the display’s refresh rate. The two available options are

“Continuous” and “Single”, which will be discussed later in this report.

Figure 47: Devicemenu Function Section E.

Section F, which is shown in Figure 48, covers the “Measurement Interval” setting

submenu. This setting allows the user to set the data recording rate, which tells the

program when to save mass data to the history log (EEPROM). As shown on lines 232 to

239, the options are once every second, every 15 or 30 minutes, or every 1, 3, 6, 12 or 24

hours.

69

Figure 48: Devicemenu Function Section F.

Section G, of the function shown in Figure 49, handles the submenu for the “Data

Recording” setting, which enables or disables data recording.

Figure 49: Devicemenu Function Section G.

70

The last two sections of the “devicemenu” function are Sections H (Figures 50

and 51) and I (Figure 52). Section H of the function controls the submenu for setting the

date in numerical form with a four-digit year, two-digit month and two-digit day. These

settings are stored in EEPROM memory locations 32, 34 and 36. Section I controls the

submenu for setting the time of day using the 24-hour format. The ability to set these two

settings were added to the device menu so that the program could track the date and time

to put timestamps on each data point that is recorded to the history log. However, this

functionality was not fully implemented in the final revision of the LLI firmware due to

time constraints. Additionally, Section I also contains the default case shown on lines

379 to 383. Like the default cases in previous sections, this case is only processed if the

user input is not valid (any value that is not an integer between ‘1’ and ‘8’).

Figure 50: Devicemenu Function Section H.

71

Figure 51: Devicemenu Function Section H Continued.

Figure 52: Devicemenu Function Section I.

72

 The last section of the “Serial_Comms_Rev_5” code covers the “loop” function.

As stated earlier, the “loop” function is the only function that the microcontroller will run

indefinitely. The only portion of this section that is of any importance is the “while” loop

on lines 443 to 448, shown in Figure 53. Upon start-up, this bit of code verifies that all of

the user setting have been set. If there are any settings that do not set, the code calls the

“devicemenue()” function on line 447 so that the user can enter the appropriate device

settings. Additionally, once all the device settings have been set, this “while” loop will

stop processing and the microcontroller will continue running the programing contained

in the “loop” function. The remaining code of this function was used to verify that the

user settings were stored correctly in the EEPROM. So the code pulls the individual user

settings from memory and then transmits the values to the terminal window on the host

device. The code is shown in Appendix J.

Figure 53: Loop Function While Loop.

Now that the code for the user-interface/device menu was completed and

functioned as intended, the next step was to integrate the user-interface code with the

“LLI Firmware Rev 2” code. As indicated previously, the second revision of the LLI

firmware added the necessary code to convert the distance measurement from the TOF to

volume and then used the ambient temperature to interpolate the agent’s density to

calculate the mass of the agent. Integration of the two codes was not as simple as just

moving the important code from the “Serial_Comms_Rev_5” program, such as the

73

“devicemenu()” function, to the “LLI Fimware Rev 2.0” code. It also entailed adding the

necessary code that implemented those user settings. For instance, if the user selected

FM-200, the program would then calculate the mass of the agent using the density of FM-

200. Like the development of the user-interface code, this integration was an iterative

process. New code would be added that implemented new functionality, and that new

function would be tested and verified to ensure that it worked as intended. This iterative

process led to eight revisions of the new firmware with each revision adding new

functionality, culminating in the final LLI firmware version shown in Appendix K, “LLI

Firmware with User Interface Rev 8”. Additionally, there is a flowchart of this code

shown in Appendix L.

 At first glance, when compared with the previous versions of the firmware, this

version looks completely different. However, some if not a lot of the code should look

familiar, because it was used in those previous versions. Like the previous versions of

the firmware, the first section contains the program header, software libraries and

definitions (constant values) used in the program. See Section One of the firmware

shown in Figure 54.

74

Figure 54: LLI Firmware with User-Interface Section One.

The only new items that have not been covered yet in previous sections are the “#define”

on lines 21 and 22, which are used to turn the display backlight off or turn it red, and the

“interruptPin 2” “#define” on line 24. This particular “#define” is very important and

will be discussed in a later section.

 Section Two of the new firmware is shown in Figure 55. This section covers the

initialization of the LCD display and the VL53L1X TOF sensor, and the global variables

that are used. Most of the variables should look familiar because of their use in previous

firmware versions. However, there are a few new ones that are located on line 47 and

lines 50 to 54. These new global variables will be discussed in greater detail when the

functions that they pertain to are explained.

75

Figure 55: LLI Firmware with User-Interface Section Two.

 In regard to functions, there are quite a few new functions that were added, not to

just add new functionality related to the addition of the user-interface, but also to

streamline the program and to make it easier to follow. Figure 56 shows all the new

functions along with some familiar ones. The Arduino defined functions “setup()” and

“loop()” will be discussed last because they both call/command the program to process

the code in the other functions listed below. Additionally, the “devicemenu()” function

will not be discussed, because it is the same function that was used in the “Serial Comms

Rev 5” firmware.

76

Figure 56: LLI Firmware with User-Interface Defined Functions.

Regarding the “wakeup()” and “ISR(TIMER1_COMPA_vect)” functions, these two

functions are a special type of function called an Interrupt Service Routine (ISR). An

interrupt is a mechanism by which the microcontroller suspends normal execution of the

program to execute the higher priority code located in the ISR [49]. There are two types

of interrupts -- hardware interrupts and software interrupts. A hardware interrupt

happens when an external event occurs like an external interrupt pin changes state from

LOW to HIGH or HIGH to LOW. The “wakeup()” ISR is a hardware type interrupt,

because it gets executed when the state of “#define interuptPIN 2” changes from HIGH to

LOW. The “ISR(TIMER1_COMPA_vect)” ISR is an example of a software interrupt,

which happens according to the code in the program [49]. This ISR is executed based on

when the counters in Timer 1 of the microcontroller match. A timer or counter is a

77

special piece of hardware inside many microcontrollers. The ATmega328P has three

timer/counters. The purpose of these timer/counters is to count, up or down, depending

on their configuration [50]. These timer/counter configurations will be discussed further

when the “datarecording()” function is explained.

 The first function that will be discussed is the “getdistance()” function shown in

Figure 57. Unlike the previous functions that have been discussed, this is the first

function that returns a variable. Because the function is returning a variable, the type of

variable must be declared in the function declaration. The distance measurement is a

float (a number with a decimal point), which is the value the function needs to return

(output), so the word “float” is substituted in the place of the word “void”, which means

that the function does not return a variable. Beyond that, the code that follows the

function declaration (line 503) on lines 505 to 527 is the same code used in “LLI

Firmware Rev 1.0” and LLI Firmware Rev 2.0” to get a distance measurement from the

TOF sensor. However, there is one modification that was made with this iteration of the

firmware. That modification is in the code used to transmit data to the host device, the

“Serial.print” commands. The letter F was added after the first parentheses (see example

in line 523) to force the data to be stored in the microcontroller’s flash memory instead of

its dynamic memory where it stores global variables [51]. If this were not done, all the

character data in the “Serial.print” commands would fill the microcontroller’s dynamic

memory and cause the program to not function correctly. The other thing of note in this

function is in line 528. Because the function needs to return the distance measured, the

code “return” followed by the variable that is needed is used.

78

Figure 57: LLI Firmware with User-Interface getdistance() Function.

 The next function to be discussed is the “getvolume()” function shown in Figure

58. As the name implies, this function is responsible for calculating the volume of the

agent and returning that value. Like the previous function, the float data type is used in

the function declaration. However, unlike the previous function, this function needs to

pass on additional parameters to its code for that volume calculation to work. Those

parameters are the distance (from the previous function), the radius, thickness, and height

of the cylinder that the user entered. So those variables must be declared in between the

parentheses, as shown on line 530. Subsequently, those same variables are used on line

533 to calculate the volume, which then returned on line 536.

79

Figure 58: LLI Firmware with User-Interface getvolume() Function.

 So, there is a function for getting the distance from the TOF sensor. What about

getting the ambient temperature from the temperature sensor? That function,

“gettemp()”, is the next one to be discussed. The structure of the “gettemp()” is exactly

the same as the get distance function. Again, the float data type is used since the

temperature value uses a decimal point and the function does not need to pass any

parameters to its code, so no variables are declared in the declaration statement on line

538, shown in Figure 59. Beyond that code, was pulled straight from “LLI Firmware Rev

2.0”, so there are no changes to discuss.

Figure 59: LLI Firmware with User-Interface gettemp() Function.

 Like the previous functions, the name of the next function, “getmass()”, explains

the main purpose of the function, which is calculating the mass of the agent. Just like the

declaration for the “getvolume()” function, the declaration of the “getmass()” function

passes on a parameter to its code. In this case, the parameter is the volume that was

calculated by the “getvolume()” function. There are additional parameters that the

function needs such, as temperature, but because they are stored in global variables, they

80

do not need to be redeclared in the function declaration. Another notable observation

about the “getmass()” function is that like the “devicemenue()”, it uses a switch case

control statement. In this case, the switch is controlled by the global variable “Agent”,

which stores which agent was selected by the user. This is important, because as noted

before, the mass of the agent is dependent on its density, so to calculate the agent mass

correctly, the right agent density must be used. Therefore, if “Agent” is equal to one,

“case 1” of the switch is run, which holds the density data for FM-200, and if it equals

two, “case 2” is processed, which has the density data for Novec 1230, and if water is

selected the variable “Agent” would be equal to three, which would run “case 3” of the

switch statement. Another addition to the code is the “if” control statement at the bottom

of each case statement. This “if” statement was added in order to save the very first mass

calculation as a reference point for the program, which will be discussed further in the

section pertaining to the “checkLimits()” function. Other than that, the code used in the

three cases is the same code used in “LLI Firmware Rev 2.0” to calculate mass – it is

merely repeated for three different agents. With that said, there is one small difference in

“case 3,” because the units used for the density of water are different than the units used

for FM-200 and Novec 1230. In the case of water, the units are grams per cubic

centimeter instead of cubic meters, so the unit conversion calculations are a little

different. Because of the size of the function, it was split up into three Figures 60, 61 and

62, each covering a case of the switch statement.

81

Figure 60: LLI Firmware with User-Interface getmass() Function Switch Case 1.

Figure 61: LLI Firmware with User-Interface getmass() Function Switch Case 2.

82

Figure 62: LLI Firmware with User-Interface getmass() Function Switch Case 3.

The purpose of the next function, “displayData()”, is to tell the program to display

temperature and mass data on the LLI’s display and to do it using the correct units of

measurement based on what the user selected, Metric or US Imperial. To do this, the

function must know which units of measure were selected by the user. Like the

“getmass()” and “devicemenu()” functions, the “displayData()” function (shown in

Figure 63) uses a “switch case” control statement which is controlled by the global

variable “Units”. The global variable “Units” is used to stores what units the user wanted

the measurement date to be in. Because the user had two options, there are two case

statements, with “case 1” being processed for metric units and “case 2” for US Imperial

units. The code for the two cases should look familiar as it was the same code that

83

appears “LLI Firmware Rev 2.0” to display temperature and mass data, with the only

difference being in “case 2” on lines 661 and 662 where temperature is converted from

Celsius to Fahrenheit.

Figure 63: LLI Firmware with User-Interface displayData() Function.

 Now that the “displayData()” function has been discussed, the “displayRefresh()

function and the “wakeup()” ISR can be discussed, since without these two functions, the

program would not know when to display data on the LLI’s display. These two functions

84

are shown in Figure 64. Like the previous functions, the refresh rate of the LLI display is

dependent on a user setting -- in this case, what did the user set the Display Data setting

to -- “Continuous” or “Single” -- which is stored in the global variable “Display”. As

previously, a “switch case” control statement is used and is controlled by “Display”.

However, unlike the previous function, even though the user is only given two options

this “switch case” used in the “displayRefresh()” employs three case statements. With

that said, “case 3” is tied to “case 2”, so in essence, there are only two cases. Before that

is explained further, it is helpful to discuss “case 1”, which is processed if the user

selected “continuous” (“Display” setting is equal to 1), In this case, the LLI display is

always being refreshed with new temperature and agent mass data by continuously

calling the “displayData()” function. In the case where the user selects “Single”,

meaning “Display” is equal to two, the function first processes “case 2”. This enables the

hardware interrupt attached to pin 2 of the microcontroller, which is connected to the

LLI’s push button, via the code on line 687. It then clears the LLI display and turns the

display’s backlight off. Once the user actuates the LLI’s pushbutton, the ISR “wakeup()”

is processed, which sets “Display” equal to three (line 706), disables the interrupt, and

then returns to normal operation. Now that “Display” is equal to three, the very next time

the program calls the “displayRefressh()” function, “case 3” of the switch will be

processed, in turn clearing the display, setting the backlight back to white, and calling the

“displayData()” function to display the latest temperature and mass data, setting

“Display” equal to two and delaying the program for two seconds so that the data are

displayed for five seconds before the display is turned off again.

85

Figure 64: LLI Firmware with User-Interface displayRefresh() Function and wakeup() ISR.

 In this section, the following functions will be discussed: “dataRecording()”,

“ISR(TIMER1_COMPA_vect)”, “recordingRate()”, and “recordData(). These functions

have been grouped together because they all pertain to the LLI’s data recording

functionality. Like other LLI functions, its data recording function is tied to two user

determined settings, and those settings are “Data Recording” (enables or disables data

recording) and “Measurement Interval” (determines the time between entry points in the

history log). The global variables that store these settings are “Recording” and

“Interval”, respectively. Since the switch case statement in function “dataRecording()” is

controlled by the variable “Recording”, it is useful to discuss this function first. The

“dataRecording()” function is shown in Figure 65. It is this function that disables or

enables the data recording function of the LLI. The first case that will be discussed is if

86

the user selects to disable data recording, meaning the variable “Recording” is equal to

one, so “case 1” of the function’s switch statement is processed, making it a pass through.

This means the overall function of the program is unaltered, so functions

“ISR(TIMER1_COMPA_vect)” and “recordingRate()” are never processed and the

“recordData()” function acts as a passthrough as well.

Figure 65: LLI Firmware with User-Interface dataRecording() Function.

However, this all changes if the user enables data recording, so “Recording” is equal to

two. In this case, the code in “case 2” of the “dataRecording()” function’s switch case

statement is processed. This code first disables all interrupts (line 721), then lines 723 to

723 enable the microcontroller’s Timer/Counter 1 to trigger a software interrupt every

87

second, calls the “recordingRate()” (line 736) function and then reenables interrupts (line

737). The “recordingRate()” function determines the rate of data recording based on the

value of the global variable “Interval”, which stored the setting selected by the user. A

portion of this function is shown in Figure 66; the full function is shown in Appendix K.

The user can select from eight different recording rates, as mentioned during the

discussion of the user-interface. If the user selected a rate of every 60 seconds, “Interval”

would be equal to one so “case 1” of the function’s switch case will be processed. In this

case, global variable “sampleRate” will be set to 60. If the user selected a rate of one

hour, the code in “case 4” would be processed, setting “sampleRate” to 3600.

Figure 66: LLI Firmware with User-Interface recordingRate()” Function Snippet.

 Once “sampleRate” is set, the program returns to the “dataRecoding()” function,

reenables the interrupts (shown on line 737 of Figure 65) and then continues with the

predefined code in the “loop” function. However, now that interrupts have been enabled,

88

every second a software interrupt occurs, causing the microcontroller to process the code

in the ISR “ISR(TIMER1_COMPA_vect)”, which is shown in Figure 67. All the code

does is increment the global variable “seconds” and checks to see if that variable is equal

to or greater than the global variable “sampleRate” (the variable set in the

“recordingRate() function). If “seconds” is equal to or greater than “sampleRate”, the

global variable “record” is set to equal one and “second” is set back to zero.

Figure 67: LLI Firmware with User-Interface ISR(TIMER1_COMPA_vect) ISR.

Once finished processing the ISR code, the microcontroller returns to processing the code

in the “loop” function, where it now calls the function “recordData()”, which through

another switch case control statement, tracks “record”. Now that “record” has been set to

equal one, “case 1” is processed running the code on lines 806 to 815, shown on Figure

68. This code writes the mass measurement data to the history log stored on the

EEPROM chip, starting at memory address 44. Once the data have been written to the

EEPROM, the memory address is incremented (line 810) to be ready for the next write

command. The “if” statement on lines 811 to 814 resets the memory address back to 44

once all memory addresses have been written to (a total of 245 data points). At this

point, old data starting back at address 44 will be overwritten by new data points.

Therefore, a timestamp is necessary. Once the program starts to overwrite the old data, it

will be impossible to tell what the most recent data point is if there is no timestamp.

89

Figure 68: LLI Firmware with User-Interface recordData() Function.

 The purpose of the next function, “checkLimits()”, shown in Figure 69, is to

verify that the mass of the agent has not changed by five percent or more. This is done

by comparing the current mass value to the original mass value that was stored in the

global variable “oldMass” by calculating the percent error between the two values. If

that percent error is equal to or greater than five percent, the microcontroller will turn the

display backlight to red and transmit an error message to the host device.

Figure 69: LLI Firmware with User-Interface checkLimits() Function.

90

 The last two functions to be discussed are the “setup()” and “loop” functions.

Because of the addition of the user-interface/device menu, the “setup()” function has

changed quite a bit compared to the LLI Firmware Rev 2.0. As shown in Figure 70, lines

68 to 91 were added to allow the user to clear the LLI’s device settings by erasing the

EEPROM.

Figure 70: LLI Firmware with User-Interface setup() Function.

Lines 93 to 117, shown in Figure 71, were added to verify the LLI’s device settings upon

startup. Additionally, in line 118, the “dataRecording()” function call was added so that

if data recording was enabled and power was lost, once power was returned to the device,

data recording would resume. Beyond those changes, the remaining lines of code are the

same as in previous firmware versions.

91

Figure 71: LLI Firmware with User-Interface setup() Function Continued.

 Regarding the “loop” function, like the “setup()” function, this function has also

seen some significant changes due to the implementation of all the other functions.

However, the addition of the other functions have significantly simplified the “loop()”

and reduced its overall size from 75 lines of code to a mere 16 lines, as shown in Figure

72. As indicated in the “Serial Comms Rev 5” firmware discussion, the “while” loop on

lines 137 to 142 was added to verify that all device settings were properly set before

92

normal operations begin. If they were not properly set, the “devicemenu()” is called so

that the user can set the device setting properly. Once the settings are set, the

microcontroller will then start processing the code on lines 144 to 150, calling each

function and executing those functions based on the user settings.

Figure 72: LLI Firmware with User-Interface loop() Function.

Results

VL53L1X TOF Sensor’s Region of Interest Calibration

The ROI calibration process showed that the optimal center point was 230 with a

timing budget of 200ms. This was determined by making the following plots using the

raw output data that were generated from the ROI Calibration program. These data were

the ROI center points that gave an average measurement that was within ±1mm of the set

distance. The first distance tested was at 102 mm, and the ROI center points shown in

green in Figure 73 are the points that returned a measurement of 102mm ±1mm. As

shown in the plot, the optimal center-points tended to be clustered in the center of the

SPAD array.

93

Figure 73: Optimal ROI Center-Points for 102mm ±1mm (Green).

The next position tested was at 152mm, and the optimal center points for this position are

shown in Figure 74.

Figure 74: Optimal ROI Center-Points for 152mm ±1mm (Green).

The optimal center points for the third position, 202mm, are shown in Figure 75.

94

Figure 75: Optimal ROI Center-Points for 202mm ±1mm (Green).

For the fourth position, 252mm was used. The optimal center points for this position are

shown in Figure 76.

Figure 76: Optimal ROI Center-Points for 252mm ±1mm (Green).

For the fifth position, 301 mm was used, and those optimal center points are shown in

Figure 77.

95

Figure 77: Optimal ROI Center-Points for 301mm ±1mm (Green).

The sixth and final position used to determine the optimal ROI center points was at

352mm. As shown with each subsequent plot, the number of optimal ROI center points

decreased the further away from the sensor. This position was no different, as shown in

Figure 78.

Figure 78: Optimal ROI Center-Points for 352mm ±1mm (Green).

With the optimal ROI center points found, the next step was to see if there were any

common points between the six positions. As shown in the plots, some of the positions

96

share optimal center points, but others do not. For example, center point 228 is common

for positions 2, 3, 4, and 5, but not common for positions 1 and 6. However, position 1

had an optimal center point of 230 and position 6 had an optimal center point of 229,

which would be included in the 4x4 ROI grid if a center point of 228 was used. This is

where a little trial and error was performed. Several center points were tested to see

which would work best. The center points were chosen based on their commonality with

other positions and how they would impact the overall 4x4 ROI grid. Those center points

were 196, 228, 204 and 230. At each of these center points, 30 distance measurements

were taken at each of the six positions. These measurement data are shown in Appendix

F. From these data, the standard deviation, average standard deviation, average and

percent error for each proposed center point were calculated using Microsoft Excel. The

values of these calculations are shown in Table 4. Reviewing the data in Table 4,

position 1 at 102mm was the deciding factor for choosing a ROI center point of 230.

This is because it is the only center point for that position that had a precent error less

than 1%.

Table 4: ROI Center-Point Calibration Calculations.

230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp

ST.Dev: 0.179 0.179 0.101 0.155 0.157 0.159 0.136 0.144 0.217 0.116 0.164 0.150

Average Dev: 0.151 0.137 0.075 0.117 0.135 0.128 0.097 0.105 0.192 0.090 0.137 0.121

Average: 350.392 350.839 351.453 348.944 300.307 299.849 301.211 301.126 250.775 250.366 250.924 252.785

%error 0.457 0.330 0.155 0.868 0.230 0.383 -0.070 -0.042 0.486 0.649 0.427 -0.311

230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp

ST.Dev: 0.455 0.202 0.188 0.428 0.370 0.189 0.185 0.154 0.072 0.183 0.194 0.255

Average Dev: 0.361 0.159 0.141 0.363 0.315 0.151 0.162 0.120 0.062 0.151 0.151 0.204

Average: 201.314 201.756 201.883 201.909 151.436 154.543 153.063 153.467 101.960 99.311 99.810 99.837

%error 0.340 0.121 0.058 0.045 0.371 -1.673 -0.699 -0.965 0.040 2.637 2.147 2.121

Distance = 202 ±1 Distance = 152 ±1 Distance = 102 ±1

Distance = 352 ±1 Distance = 301 ±1 Distance = 252 ±1

97

Accuracy and Repeatability Verification of the VL53L1X TOF Sensor

The following results are from the distance verification testing. The purpose of

this testing was to see what effect temperature had on the TOF’s measurement data. For

the testing, three different positions were checked. These positions were at 151mm,

251mm and 351mm. At each position, distance measurements were taken at three

different temperatures including 0C, 23C, and 37.8C. The results are shown in Figures

79, 80, and 81. As shown in the figures, temperature does influence the distance

measurement, and this effect is dependent on the position of the inner float, which the

author found curious. At the 351mm position (Figure 81), the data show that high

temperatures do not have an effect, but cold temperatures did. Similarly, at the 151mm

position, the cold temperature did not seem to impact the measurement but the high

temperature did. The consistency/repeatability of the measurement for the most part is

not apparent. However, this was not the case at 151mm, where the data show that

consistency was significantly impacted at 37.8C.

Figure 79: 151mm Time-of-Flight Sensor Data at Three Different Temperatures.

150

151

152

153

154

155

156

157

0 10 20 30 40 50

D
is

ta
n

ce
 (

m
m

)

Temperture (C)

Distance Versus Temperature at 151mm

0C 37.8C 23C

98

Figure 80: 251mm Time-of-Flight Sensor Data at Three Different Temperatures.

Figure 81: 351mm Time-of-Flight Sensor Data at Three Different Temperatures.

Accuracy and Repeatability Verification of the Temperature Sensor

 In addition to verifying the accuracy and repeatability of the TOF sensor, another

purpose of the testing was to verify the accuracy of the LM35 temperature sensor. The

specific LM35 sensor used in the POC was the LM35DZ, which has an accuracy of

±1.5°C, which does not meet the requirements. This sensor was used instead of the

LM35CZ, which does feature an accuracy of ±1.0°C, because of availability issues. The

result of this testing is shown in Figure 82. Figure 82 shows that the LM35DZ is not

suitable for this application due to its limited accuracy of ±1.5°C [38].

240

245

250

255

0 10 20 30 40 50D
is

ta
n

ce
 (

m
m

)
Temperture (C)

Distance Versus Temperture at 251mm

0C 37.8C 23C

344

346

348

350

352

354

0 10 20 30 40 50

D
is

ta
n

ce
 (

m
m

)

Temperture (C)

Distance Versus Temperture at 351mm

23C 0C 37.8C

99

Figure 82: LM35DV Temperature Measurement Verification.

LLI Firmware Rev 2.0 Verification

The last bit of testing that was done was verifying that the agent volume-to-

weight calculation functioned correctly. Because FM-200 nor 3M Novec 1230 could be

used, water was used instead, since the specific gravities of the three chemicals are

similar. For this test, a 5-gallon pail was used as the agent storage cylinder, along with a

calibrated scale to verify the weight and the author’s laptop, as shown in Figure 83.

Figure 83: Agent Volume-to-Weight Conversion Verification Setup.

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350

Te
m

p
er

at
u

re
 (

C
)

Time (s)

LM35 Measured Versus Actual Temperature

0C Measured

23C Measured

37.8C Measured

0C Actual

23C Actual

37.8C Actual

100

Figure 84 shows that if the dimensional information for the storage container is known

and is accurate, the TOF - based LLI sensor, and its volume-to-weight conversion

algorithm perform as they should. In addition, it shows that the TOF - based LLI can be

extremely accurate.

Figure 84: Verification of the LLI's Volume to Weight Conversion Algorithm.

101

LLI Firmware with User Interface Rev 8.0 Verification

 Through the testing process, two bugs were discovered in the “LLI Firmware with

User Interface Rev 8.0” program. They are as follows:

• Bug One - The first bug is tied to the serial communications between the LLI and

the host device. If the user transmits an alphabetical character instead of an

integer, it will result in the LLI program entering a never-ending loop of

transmitting the device menu and the error message associated with an incorrect

entry.

o Root Cause – Has not been determined, but it is rooted in how the

program handles non-integer data types communications.

• Bug Two - When data recording is enabled, and the display refresh rate is set to

continuous, the LLI must be reset for data recording to be enabled. However, if

data recording is enabled and the display refresh rate is set to single, the LLI does

not need to be reset for data recording to work.

o Root Cause – Has not been determined, but the issue is believed to be

caused by when and how the interrupts associated with those functions are

enabled.

Conclusions

 The purpose of this MSOE MSE Capstone Project was to design a TOF-based

LLI to replace the current Dip Tape LLIs used to verify the weight of FM-200 and 3M

Novec 1230 fire suppression agent used in Clean Agent Fire Suppression System agent

storage cylinders. The assembled POC units have shown that in general, TOF-based

sensors -- specifically the ST FlightSenseTM VL53L1X -- are capable of accurately

102

determining agent weight based on distance to a float. With the addition of the user

interface, the POC design has taken another step to becoming a marketable product.

Through the addition of the user interface the end user now has the power to choose

between multiple agent types, set the dimensions of the cylinder that the LLI is attached

to, set the refresh rate of the LLI’s display, set the device to record agent mass with eight

different recording rates, and to set the units of measure to either Metric or US Imperial.

Recommendations

 The work that has been done so far on the VL53L1X TOF LLI has shown that the

technology can perform the task. However, through this development process, several

challenges have emerged that need further investigation or development. For example, to

have a marketable product, a more robust and efficient calibration method will be

required. The current method is cumbersome and time consuming and requires far too

much human input. Beyond the calibration inefficiencies, further investigation is

required on the effects that temperature has on the VL53L1X sensor measurements and

ways to mitigate those effects. Additionally, further testing is required to verify that the

sensor will work with FM-200 and 3M Novec 1230. Furthermore, the results of the

accuracy and repeatability testing for the LM35DZ temperature sensor shows that it does

not meet the required accuracy of ±1.0°C, so a readily available temperature sensor that

meets that requirement will need to be found [38].

 On the software side, additional testing and development is also required. During

the limited testing of the latest LLI firmware, two bugs were discovered. Both bugs

require the LLI to be reset to recover from the issues. On the development side, using an

103

EEPROM to store data may be problematic due to the limited number of writes. One

workaround for this issue, if a suitable alternative cannot be found, would be to limit the

data recording rates to twice per day. Additionally, the memory size of the EEPROM is

inadequate for a data recording application. Lastly, the current user interface lacks polish

and should be replaced with a more user-friendly application-based user interface.

104

References

[1] TLX Technologies, 2022, “Custom Solenoids and Solenoid Valves”, [Internet,

WWW], Address: https://www.tlxtech.com [Accessed: 11 November 2022].

[2] Dickinson, Micah. 11 March 2022. “What is a Clean Agent?”. [Internet, WWW].

Available: Available from Vanguard Website. Address: https://vanguard-

fire.com/what-is-a-clean-agent/ [Accessed: 11 November 2022]. A copy of this

article is available from the website.

[3] Instrumentation Tools. 2022. “What is Dip Tape Level Measurement?” [Internet,

WWW]. Available: Available from Instrumentation Tool’s Website. Address:

https://instrumentationtools.com/dip-tape-level-measurement/ [Accessed: 11

November 2022]. A copy of this article is available from the website.

[4] Wallulis, Karl. 30 April 2018. “How to Prevent Parallax Error”. [Internet,

WWW]. Available: Available from Sciencing Website. Address:

https://sciencing.com/prevent-parallax-error-10000073.html [Accessed: 11

November 2022]. A copy of this article is available from the website.

[5] National Fire Protection Association. 2022. “NFPA 2001 Standard on Clean

Agent Fire Extinguishing Systems”. [Internet, WWW, PDF]. Available: Available

from NFPA Website. Address: https://link.nfpa.org/free-

access/publications/2001/2022 [Accessed: 11 November 2022]. A copy of this

article is in the student’s possession and may be consulted by contacting the

student at icstumpe@msoe.edu. A copy of this article is available from the website.

[6] Chemetron Fire Systems. 16 April 2004. “FM-200TM Sigma Series Engineered

System Design, Installation, Operation & Maintenance Manual”. [Internet,

https://www.tlxtech.com/
https://vanguard-fire.com/what-is-a-clean-agent/
https://vanguard-fire.com/what-is-a-clean-agent/
https://instrumentationtools.com/dip-tape-level-measurement/
https://sciencing.com/prevent-parallax-error-10000073.html
https://link.nfpa.org/free-access/publications/2001/2022
https://link.nfpa.org/free-access/publications/2001/2022
mailto:icstumpe@msoe.edu

105

WWW, PDF]. Available: Available from Chemetron Fire Systems Website.

Address: https://fm200.co.id/documentation/manual-book/Chemetron%20FM-

200%20Sigma%20Series%20Engineered%20System.pdf [Accessed: 11

November 2022]. A copy of this article is available from the website.

[7] Fire Trace. 6 July 2018. “35 Bar Engineered Clean Agent Fire Suppression

System Design, Installation, Operation, and Maintenance Manual”. [Internet,

WWW, PDF]. Available: Available from Fire Trace Website. Address:

http://www.firetrace.com/hubfs/DIOMs/FTF000003-B%2035-Bar-Novec-1230-

DIOM-Manual.pdf [Accessed: 11 November 2022]. A copy of this article is

available from the website.

[8] ST. 2023. “Time-of-Flight Sensor – Overview”. [Internet, WWW]. Available:

Available from ST Website. Address: https://www.st.com/en/imaging-and-

photonics-solutions/time-of-flight-sensors.html [Accessed: 30 January 2023]. A

copy of this article is available from the website.

[9] Seed Studio. 2023. “What is a Time-of-Flight Sensor and How does a TOF

Sesnor Work”. [Internet, WWW]. Available: Available from Seed Studio

Website. Address: https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-

of-flight-sensor-and-how-does-a-tof-sensor-work/ [Accessed: 30 January 2023].

A copy of this article is available from the website.

[10] Terabee. 2023. “Time-of-Flight Principle”. [Internet, WWW]. Available:

Available from Terabee Website. Address: https://www.terabee.com/time-of-

flight-

principle/#:~:text=Time%2Dof%2DFlight%20(ToF)%20sensors%20are%20used

https://fm200.co.id/documentation/manual-book/Chemetron%20FM-200%20Sigma%20Series%20Engineered%20System.pdf
https://fm200.co.id/documentation/manual-book/Chemetron%20FM-200%20Sigma%20Series%20Engineered%20System.pdf
http://www.firetrace.com/hubfs/DIOMs/FTF000003-B%2035-Bar-Novec-1230-DIOM-Manual.pdf
http://www.firetrace.com/hubfs/DIOMs/FTF000003-B%2035-Bar-Novec-1230-DIOM-Manual.pdf
https://www.st.com/en/imaging-and-photonics-solutions/time-of-flight-sensors.html
https://www.st.com/en/imaging-and-photonics-solutions/time-of-flight-sensors.html
https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-of-flight-sensor-and-how-does-a-tof-sensor-work/
https://www.seeedstudio.com/blog/2020/01/08/what-is-a-time-of-flight-sensor-and-how-does-a-tof-sensor-work/
https://www.terabee.com/time-of-flight-principle/#:~:text=Time%2Dof%2DFlight%20(ToF)%20sensors%20are%20used%20for,the%20distance%20between%20the%20points
https://www.terabee.com/time-of-flight-principle/#:~:text=Time%2Dof%2DFlight%20(ToF)%20sensors%20are%20used%20for,the%20distance%20between%20the%20points
https://www.terabee.com/time-of-flight-principle/#:~:text=Time%2Dof%2DFlight%20(ToF)%20sensors%20are%20used%20for,the%20distance%20between%20the%20points

106

%20for,the%20distance%20between%20the%20points [Accessed: 30 January

2023]. A copy of this article is available from the website.

[11] Piech, Marcin [Inventor] Jedryczka, Cezary [Inventor] Szelag, Wojciech

[Inventor] Wojciecjowski, Rafal [Inventor] and Witczak, Tadeusz Pawel. 4 June

2020. “Magnetic Trap Suppression Tank Level Sensor” International Publication

Number W0 2020/112241 A1.

[12] Dickinson, Micah. 11 March 2022. “What is a Clean Agent?”. [Internet, WWW].

Available: Available from Vanguard Website. Address: https://vanguard-

fire.com/what-is-a-clean-agent/ [Accessed: 11 November 2022]. A copy of this

article is available from the website.

[13] Puchovsky, Milosh. May 2011. “Clean agent fire suppression systems”. [Internet,

WWW, Database]. Available: Available from MSOE Library’s Summon

Discovery Service. Address:

https://www.proquest.com/docview/1023363682?accountid=9445&parentSession

Id=lS0oVYHJqom0yTsHDVl%2F0XbRB%2B0i6MH%2FUH5XDaFkl00%3D

[Accessed: 11 November 2022]. A copy of this article is in the student’s

possession and may be consulted by contacting the student at

icstumpe@msoe.edu.

[14] Draper III, M. Lee PE, May 2017. “Clean Agent Fire Suppression for Mission

Critical Facilities”. [Internet, WWW, Database]. Available: Available from MSOE

Library’s Summon Discovery Service. Address: [Accessed: 11 November 2022].

A copy of this article is in the student’s possession and may be consulted by

contacting the student at icstumpe@msoe.edu.

https://www.terabee.com/time-of-flight-principle/#:~:text=Time%2Dof%2DFlight%20(ToF)%20sensors%20are%20used%20for,the%20distance%20between%20the%20points
https://vanguard-fire.com/what-is-a-clean-agent/
https://vanguard-fire.com/what-is-a-clean-agent/
https://www.proquest.com/docview/1023363682?accountid=9445&parentSessionId=lS0oVYHJqom0yTsHDVl%2F0XbRB%2B0i6MH%2FUH5XDaFkl00%3D
https://www.proquest.com/docview/1023363682?accountid=9445&parentSessionId=lS0oVYHJqom0yTsHDVl%2F0XbRB%2B0i6MH%2FUH5XDaFkl00%3D
mailto:icstumpe@msoe.edu

107

[15] Hurley, Morgan J. 2016. “SFPE Handbook of Fire Protection Engineering, 5"

Ed.”. [Book]. Available: Available from MSOE Library. [Accessed: 11 November

2022].

[16] Frontier Fire Protection. 2023. “FM-200 Description”. [Internet, WWW].

Available: Frontier Fire Protection Website. Address:

https://www.frontierfireco.com/productsservices/fm-200/ [Accessed: 30 January

2023]. A copy of this article is available from the website.

[17] Vigstol, Derek. 21 April 2021. “OSHA and NFPA 70E: A History of Powerful

Protection for Employees on the Job”. [Internet, WWW]. Available: National Fire

Protection Association Website. Address: https://www.nfpa.org/News-and-

Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-

Posts/2021/04/21/OSHA-and-NFPA-70E-A-History-of-Powerful-Protection-for-

Employees-on-the-Job

[18] FM Approvals. April 2013. “Approval Standard for Clean Agent Extinguishing

Systems Class Number 5600”. [Internet, WWW, PDF]. Available: Available from

FM Approvals Website. Address: https://www.fmapprovals.com/approval-

standards [Accessed: 11 November 2022]. A copy of this article is in the student’s

possession and may be consulted by contacting the student at

icstumpe@msoe.edu.

[19] UL Solutions. 29 August 2012. “UL Standard for Safety For Halocarbon Clean

Agent Extinguishing System Units UL 2166”. [Internet, WWW, PDF]. Available:

Available form UL Solutions Website. Address:

https://www.shopulstandards.com/ [Accessed: 11 November 2022]. A copy of

https://www.frontierfireco.com/productsservices/fm-200/
https://www.nfpa.org/News-and-Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/2021/04/21/OSHA-and-NFPA-70E-A-History-of-Powerful-Protection-for-Employees-on-the-Job
https://www.nfpa.org/News-and-Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/2021/04/21/OSHA-and-NFPA-70E-A-History-of-Powerful-Protection-for-Employees-on-the-Job
https://www.nfpa.org/News-and-Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/2021/04/21/OSHA-and-NFPA-70E-A-History-of-Powerful-Protection-for-Employees-on-the-Job
https://www.nfpa.org/News-and-Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/2021/04/21/OSHA-and-NFPA-70E-A-History-of-Powerful-Protection-for-Employees-on-the-Job
https://www.fmapprovals.com/approval-standards
https://www.fmapprovals.com/approval-standards
mailto:icstumpe@msoe.edu
https://www.shopulstandards.com/

108

this article is in the student’s possession and may be consulted by contacting the

student at icstumpe@msoe.edu.

[20] UL Solutions. 29 October 2003. “UL 864 Control Units and Accessories for Fire

Alarm Systems”. [Internet, WWW, PDF]. Available: Available form UL

Solutions Website. Address: https://www.shopulstandards.com/ [Accessed: 11

November 2022]. A copy of this article is in the student’s possession and may be

consulted by contacting the student at icstumpe@msoe.edu.

[21] Gems Sensors & Controls. 2021. “Products Liquid Level Sensors”. [Internet,

WWW]. Available: Available from Gems Sensors and Controls Website.

Address: https://www.gemssensors.com/product/liquid-level-sensors [Accessed:

11 November 2022]. A copy of this article is available from the website.

[22] Hunt James A. 3 November 2007. “Level Sensing of Liquids and Solids – A

Review of the Technologies”. [Internet, WWW, Database]. Available: Available

from MSOE Library’s Summon Discovery Service. Address:

https://www.proquest.com/docview

/226858206/fulltextPDF/CF2A120285E148BCPQ/1?accountid=9445 [Accessed:

11 November 2022]. A copy of this article is in the student’s possession and may

be consulted by contacting the student at icstumpe@msoe.edu.

[23] Sino-Inst. “Measure & Control Solutions”. [Internet, WWW]. Available:

Available from Sino-Inst Website. Address: https://www.drurylandetheatre.com/

senors-for-tank-level-measurement/ [Accessed: 11 November 2022]. A copy of

this article is available from the website.

[24] Kari E. Maatta and Juha Tapio Kostamovaara "High-accuracy liquid level meter

based on pulsed time of flight principle", Proc. SPIE 3100, Sensors, Sensor

mailto:icstumpe@msoe.edu
https://www.shopulstandards.com/
mailto:icstumpe@msoe.edu
https://www.gemssensors.com/product/liquid-level-sensors
https://www.proquest.com/docview%20/226858206/fulltextPDF/CF2A120285E148BCPQ/1?accountid=9445
https://www.proquest.com/docview%20/226858206/fulltextPDF/CF2A120285E148BCPQ/1?accountid=9445
https://www.drurylandetheatre.com/%20senors-for-tank-level-measurement/
https://www.drurylandetheatre.com/%20senors-for-tank-level-measurement/

109

Systems, and Sensor Data Processing, (25 September 1997);

https://doi.org/10.1117/12.287754

[25] X. Liu, B. J. Corbin, Stacy Morris Bamberg, William R. Provancher, and

Eberhard Bamberg "Optical system to detect volume of medical samples in

labeled test tubes," Optical Engineering 47(9), 094402 (1 September 2008).

https://doi.org/10.1117/1.2978953

[26] Clark, Reece R. [Inventor] and Barmore, Gaston C. Jr. 4 June 2020. “Optical

Tank-Level Gauge” United States Paten Number US5585786

[27] Fraser, Gordon, Bryce. 9 December 1982. “Fluid Level Indicator” International

Publication Number WO82/04316A1

[28] Lee, Kyung Mi. 16 May 2014. “Water Level Sensing Apparatus” South Korea

Patent Number KR20150004237U

[29] Chen, Jianwen. 12 December 2015. “Magneto-strictive Liquid Level” China

Patent Number CN105486382A

[30] Chan, Eric Y [Inventor] and Koshinz, Dennis G. 02 May 2020. “Non-Contact

Time-of-Flight Fuel Level Sensor Using Plastic Optical Fiber” European Paten

Number US5585786

[31] Fuping, Qu. 24 April 2017. “Liquid Extinguisher Steel Cylinder Liquid Level

Detection Device” China Patent Number CN206772394U

[32] Liverani, Maurizio. 11 November 2016. “Device for measuring the level of a

liquid in a container, in particular for fire protection systems” German Patent

Number DE202016006955U1

https://doi.org/10.1117/12.287754
https://doi.org/10.1117/1.2978953

110

[33] Piech, Marcin [Inventor] Witczak, Tadeusz Pawel [Inventor] Wawrzyniak, Beata

I [Inventor] Majchrzak, Lukasz [Inventor] Milcarek, Dawid. 04 June 2020.

“Adaptable Suppression Tank Level Sensor” International Publication Number

WO2020/112218A1

[34] Cypress Semiconductor Corporation. 2009-20010. “Quadrature Decoder

Document Number: 001-61295 Rev. *A”. [Internet, WWW, PDF]. Available:

Available from Infineon Technologies Website. Address:

https://www.infineon.com/dgdl/Infineon-

Quadrature_Decoder_(QuadDec)_Component_QuadDec_V1.50-

Software%20Module%20Datasheets-v03_00-

EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9659412050 [Accessed: 01 January

2023]. A copy of this article is available from the website.

[35] University of Cambridge. 18 August 2017. “Maths in a Minute: How does laser

Interferometry Work?”. [Internet, WWW]. Available: Available from Plus

Website. Address: https://plus.maths.org/content/maths-minute-how-does-laser-

interferometry-work [Accessed: 01 February 2023]. A copy of this article is

available from the website.

[36] Collins, Danielle. 22 May 2018. “How Do Magnetostrictive Sensors Work?”.

[Internet, WWW]. Available: Available from Linear Motion Tips Website.

Address: https://www.linearmotiontips.com/how-do-magnetostrictive-sensors-

work/ [Accessed: 01 February 2023]. A copy of this article is available from the

website.

[37] ST Microelectronics. 2018 “VL53L1X Datasheet”. [Internet, WWW, PDF].

Available: Available from ST Microelectronics Website. Address:

https://www.infineon.com/dgdl/Infineon-Quadrature_Decoder_(QuadDec)_Component_QuadDec_V1.50-Software%20Module%20Datasheets-v03_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9659412050
https://www.infineon.com/dgdl/Infineon-Quadrature_Decoder_(QuadDec)_Component_QuadDec_V1.50-Software%20Module%20Datasheets-v03_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9659412050
https://www.infineon.com/dgdl/Infineon-Quadrature_Decoder_(QuadDec)_Component_QuadDec_V1.50-Software%20Module%20Datasheets-v03_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9659412050
https://www.infineon.com/dgdl/Infineon-Quadrature_Decoder_(QuadDec)_Component_QuadDec_V1.50-Software%20Module%20Datasheets-v03_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0e9659412050
https://plus.maths.org/content/maths-minute-how-does-laser-interferometry-work
https://plus.maths.org/content/maths-minute-how-does-laser-interferometry-work
https://www.linearmotiontips.com/how-do-magnetostrictive-sensors-work/
https://www.linearmotiontips.com/how-do-magnetostrictive-sensors-work/

111

https://www.st.com/resource/en/datasheet/vl53l1x.pdf [Accessed: 01 February

2023]. A copy of this article is available from the website.

[38] Utmel Electronic. 24 August 2021. “An Overview of Development Board”.

[Internet, WWW]. Available: Available from Utmel Electronic Website. Address:

https://www.utmel.com/blog/categories/pcb/an-overview-of-development-board

[Accessed: 01 February 2023]. A copy of this article is available from the website.

[39] SparkFun Electronics. 2022. “Qwiic Distance Sensor (VL53L1X, VL53L4CD)

Hookup Guide”. [Internet, WWW]. Available: Available from SparkFun

Electronics Website. Address: https://learn.sparkfun.com/tutorials/qwiic-distance-

sensor-vl53l1x-vl53l4cd-hookup-guide [Accessed: 01 February 2023]. A copy of

this article is available from the website.

[40] Arduino. 2021. “Arduino Uno Rev3: Overview”. [Internet, WWW]. Available:

Available from Arduino Website. Address:

https://store.arduino.cc/products/arduino-uno-rev3 [Accessed: 01 February 2023].

A copy of this article is available from the website.

[41] Atmel Corporation. 2015. “Atmel Atmega328P 8-bit AVR Microcontroller with

32K Bytes In-System Programmable Flash Datasheet”. [Internet, WWW, PDF].

Available: Available from the Microchip Website. Address:

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-

Microcontrollers-ATmega328P_Datasheet.pdf [Accessed: 01 February 2023]. A

copy of this article is available from the website.

[42] National Semiconductor. November 2000. “LM35 Precision Centigrade

Temperature Sensors”. [Internet, WWW, PDF]. Available: Available from the

Texas Instruments Website. Address:

https://www.st.com/resource/en/datasheet/vl53l1x.pdf
https://www.utmel.com/blog/categories/pcb/an-overview-of-development-board
https://learn.sparkfun.com/tutorials/qwiic-distance-sensor-vl53l1x-vl53l4cd-hookup-guide
https://learn.sparkfun.com/tutorials/qwiic-distance-sensor-vl53l1x-vl53l4cd-hookup-guide
https://store.arduino.cc/products/arduino-uno-rev3
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

112

https://rocelec.widen.net/view/pdf/lhmv29xclw/NATLS06060-

1.pdf?t.download=true&u=5oefqw [Accessed: 01 February 2023]. A copy of this

article is available from the website.

[43] Ada, Lady. 2022. “RGB LCD Shield Overview”. [Internet, WWW]. Available:

Available from the Adafruit Website. Address: https://learn.adafruit.com/rgb-lcd-

shield/using-the-rgb-lcd-

shield?view=all&gclid=Cj0KCQiAz9ieBhCIARIsACB0oGKmqtyW_PWbCwhX

E1mMbYNIwlK67BfDr5B6OmEaimHas4-tkm91kH4aAutxEALw_wcB

[Accessed: 01 February 2023]. A copy of this article is available from the website.

[44] ST Microelectronics. 2018 “Application note - AN5191 - Using the

programmable region of interest (ROI) with the VL53L1X”. [Internet, WWW,

PDF]. Available: Available from ST Microelectronics Website. Address:

https://www.st.com/resource/en/application_note/an5191-using-the-

programmable-region-of-interest-roi-with-the-vl53l1x-stmicroelectronics.pdf

[Accessed: 01 February 2023]. A copy of this article is available from the website.

[45] ST Microelectronics. 2018 “UM2356 User Manual VL53L1X API User Manual”.

[Internet, WWW, PDF]. Available: Available from ST Microelectronics Website.

Address: https://www.st.com/resource/en/user_manual/um2356-vl53l1x-api-user-

manual-stmicroelectronics.pdf [Accessed: 01 February 2023]. A copy of this

article is available from the website.

[46] Llamas, Luis. 12 April 2022. “Arduino-Interpolation”. [Internet, WWW].

Available: Available from GitHub Inc Website. Address:

https://github.com/luisllamasbinaburo/Arduino-Interpolation [Accessed: 01

February 2023]. A copy of this article is available from the website.

https://rocelec.widen.net/view/pdf/lhmv29xclw/NATLS06060-1.pdf?t.download=true&u=5oefqw
https://rocelec.widen.net/view/pdf/lhmv29xclw/NATLS06060-1.pdf?t.download=true&u=5oefqw
https://learn.adafruit.com/rgb-lcd-shield/using-the-rgb-lcd-shield?view=all&gclid=Cj0KCQiAz9ieBhCIARIsACB0oGKmqtyW_PWbCwhXE1mMbYNIwlK67BfDr5B6OmEaimHas4-tkm91kH4aAutxEALw_wcB
https://learn.adafruit.com/rgb-lcd-shield/using-the-rgb-lcd-shield?view=all&gclid=Cj0KCQiAz9ieBhCIARIsACB0oGKmqtyW_PWbCwhXE1mMbYNIwlK67BfDr5B6OmEaimHas4-tkm91kH4aAutxEALw_wcB
https://learn.adafruit.com/rgb-lcd-shield/using-the-rgb-lcd-shield?view=all&gclid=Cj0KCQiAz9ieBhCIARIsACB0oGKmqtyW_PWbCwhXE1mMbYNIwlK67BfDr5B6OmEaimHas4-tkm91kH4aAutxEALw_wcB
https://learn.adafruit.com/rgb-lcd-shield/using-the-rgb-lcd-shield?view=all&gclid=Cj0KCQiAz9ieBhCIARIsACB0oGKmqtyW_PWbCwhXE1mMbYNIwlK67BfDr5B6OmEaimHas4-tkm91kH4aAutxEALw_wcB
https://www.st.com/resource/en/application_note/an5191-using-the-programmable-region-of-interest-roi-with-the-vl53l1x-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an5191-using-the-programmable-region-of-interest-roi-with-the-vl53l1x-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2356-vl53l1x-api-user-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2356-vl53l1x-api-user-manual-stmicroelectronics.pdf
https://github.com/luisllamasbinaburo/Arduino-Interpolation

113

[47] Toppr. 2022 “Linear Interpolation Formula”. [Internet, WWW]. Available:

Available from Toppr Website. Address: https://www.toppr.com/guides/maths-

formulas/linear-interpolation-

formula/#:~:text=Formula%20of%20Linear%20Interpolation,-

Its%20simplest%20formula&text=This%20formula%20is%20using%20coordinat

es,1%7D%20are%20the%20first%20coordinates [Accessed: 01 February 2023].

A copy of this article is available from the website.

[48] DuPont. November 2009. “DuPontTM FM-200 (HFC-227ea) Fire Extinguishing

Agent Properties, Uses, Storage, and Handling”. [Internet, WWW, PDF].

Available: Available from the Fire Security Website. Address:

https://www.firesecurity.gr/Pdf/k23261_FM-200_PUSH.pdf [Accessed: 11

November 2022]. A copy of this article is available from the website.

[49] Thangavel, Author. February 2019. “Arduino Interrupts Tutorial”. [Internet,

WWW]. Available: Available from Circuit Digest Website. Address:

https://circuitdigest.com/microcontroller-projects/arduino-interrupt-tutorial-with-

examples# [Accessed: 06 May 2023]. A copy of this article is available from the

website.

[50] Hymel, Shawn. May 2023. “Getting Started with STM32 - Timers and Timer

Interrupts”. [Internet, WWW]. Available: Available from Digi-Key Electronics

Website. Address: https://www.digikey.com/en/maker/projects/getting-started-

with-stm32-timers-and-timer-

interrupts/d08e6493cefa486fb1e79c43c0b08cc6#:~:text=Timers%20are%20one%

20of%20the,and%20even%20run%20operating%20systems [Accessed: 06 May

2023]. A copy of this article is available from the website.

https://www.toppr.com/guides/maths-formulas/linear-interpolation-formula/#:~:text=Formula%20of%20Linear%20Interpolation,-Its%20simplest%20formula&text=This%20formula%20is%20using%20coordinates,1%7D%20are%20the%20first%20coordinates
https://www.toppr.com/guides/maths-formulas/linear-interpolation-formula/#:~:text=Formula%20of%20Linear%20Interpolation,-Its%20simplest%20formula&text=This%20formula%20is%20using%20coordinates,1%7D%20are%20the%20first%20coordinates
https://www.toppr.com/guides/maths-formulas/linear-interpolation-formula/#:~:text=Formula%20of%20Linear%20Interpolation,-Its%20simplest%20formula&text=This%20formula%20is%20using%20coordinates,1%7D%20are%20the%20first%20coordinates
https://www.toppr.com/guides/maths-formulas/linear-interpolation-formula/#:~:text=Formula%20of%20Linear%20Interpolation,-Its%20simplest%20formula&text=This%20formula%20is%20using%20coordinates,1%7D%20are%20the%20first%20coordinates
https://www.toppr.com/guides/maths-formulas/linear-interpolation-formula/#:~:text=Formula%20of%20Linear%20Interpolation,-Its%20simplest%20formula&text=This%20formula%20is%20using%20coordinates,1%7D%20are%20the%20first%20coordinates
https://www.firesecurity.gr/Pdf/k23261_FM-200_PUSH.pdf
https://circuitdigest.com/microcontroller-projects/arduino-interrupt-tutorial-with-examples
https://circuitdigest.com/microcontroller-projects/arduino-interrupt-tutorial-with-examples
https://www.digikey.com/en/maker/projects/getting-started-with-stm32-timers-and-timer-%20interrupts/d08e6493cefa486fb1e79c43c0b08cc6#:~:text=Timers%20are%20one%20of%20the,and%20even%20run%20operating%20systems
https://www.digikey.com/en/maker/projects/getting-started-with-stm32-timers-and-timer-%20interrupts/d08e6493cefa486fb1e79c43c0b08cc6#:~:text=Timers%20are%20one%20of%20the,and%20even%20run%20operating%20systems
https://www.digikey.com/en/maker/projects/getting-started-with-stm32-timers-and-timer-%20interrupts/d08e6493cefa486fb1e79c43c0b08cc6#:~:text=Timers%20are%20one%20of%20the,and%20even%20run%20operating%20systems
https://www.digikey.com/en/maker/projects/getting-started-with-stm32-timers-and-timer-%20interrupts/d08e6493cefa486fb1e79c43c0b08cc6#:~:text=Timers%20are%20one%20of%20the,and%20even%20run%20operating%20systems

114

[51] Arduino [Author] Bagur, José [Author] Chung, Taddy. April 2023. “Arduino

Memory Guide”. [Internet, WWW]. Available: Available from Arduino Website.

Address: https://docs.arduino.cc/learn/programming/memory-guide [Accessed: 06

May 2023]. A copy of this article is available from the website.

https://docs.arduino.cc/learn/programming/memory-guide

115

Appendix A: LLI Firmware Rev 1.0

/*

Reading distance from the laser-based ST Microelectronics VL53L1X sensor and

temperature from the TI LM35 temperature sensor.

 By: Ian Stumpe

 MSOE MSE Capstone Project

 Date: December 10, 2022

 License: This code is public domain, but you buy me a beer if you use this and we meet

someday (Beerware license).

*/

#include <SparkFun_VL53L1X.h> //SparkFun ST VL53L1X shield Library:

http://librarymanager/All#SparkFun_VL53L1X

#include <Wire.h> //Allows Arduino boards to communicate with I2C/TWI Devices.

#include <Adafruit_RGBLCDShield.h> //Adafruit RGB LCD Shield Library:

https://learn.adafruit.com/rgb-lcd-shield

#include <avr/sleep.h> //this AVR library contains the methods that control the sleep

modes

// The Adafruit RGBLCD Shield uses the I2C SCL and SDA pins.

Adafruit_RGBLCDShield lcd = Adafruit_RGBLCDShield();

// These #defines set the backlight color of the Adafruit RGB LCD Display

#define OFF 0x0

#define RED 0x1

#define YELLOW 0x3

116

#define GREEN 0x2

#define TEAL 0x6

#define BLUE 0x4

#define VIOLET 0x5

#define WHITE 0x7

#define interruptPin 2 //Pin we are going to use to wake up the Arduino

SFEVL53L1X distanceSensor; //Initializes ST VL53L1X distance sensor.

//Variables

int val; //Raw ADC temperature value

int tempPin = A0; //Analog pin connected to TI temperature sensor

//float olddistance = 100; //Variable for tracking old distance measurement

void setup(void)

{

 Wire.begin(); //Initialize I2C BUS

 lcd.begin(16, 2); //Initialize LCD Display, sets LCD's number of columns and rows.

 lcd.setBacklight(WHITE); //Set LCD backlight color

 Serial.begin(115200); //Initialize Serial BUS for troubleshooting.

 //Verifies ST VL53L1 sensor is wired correctly. Begin returns 0 on a good init

 if (distanceSensor.begin() != 0)

 {

 Serial.println("Sensor failed to begin. Please check wiring. Freezing...");

 while (1);

 }

117

 Serial.println("Sensor online!");

 distanceSensor.setROI(4, 4, 196); //Sets the VL53L1's Range of Interest (receiver grid

size)

 //Sets the VL53L1 timing budget which is the amount of time (ms) over which a

measurement is taken

 distanceSensor.setTimingBudgetInMs(200);

 //Sets the VL53L1's distance measurement mode Short = 1.3m Long = 4m

 distanceSensor.setDistanceModeShort();

}

void loop(void)

{

 float distance = 0; //Variable to hold distance measurement data

 distanceSensor.startRanging(); //Write configuration bytes to initiate measurement

 for (int i=0; i < 1000; i++) //Loop to take 10 measurements to get the average

measurement

 {

 while (!distanceSensor.checkForDataReady()) //Checks if a measurement is ready

 {

 delay(1);

 }

 distance = distance + distanceSensor.getDistance(); //Get the result of the measurement

in mm from the sensor

 //Serial.println(distanceSensor.getSignalPerSpad());

118

 }

 distanceSensor.clearInterrupt(); //Clears interrupt caused by the .getDistance command.

 distanceSensor.stopRanging(); //Stop taking measurements

 Serial.print("SUM (mm): ");

 Serial.print(distance);

 distance = distance/1000; //Calculate the average

 Serial.print(" AVG (mm): ");

 Serial.print(distance);

 //Variable to hold converted distance measurement (mm to inches)

 //float distanceInches = distance;

 //float distanceInches = (distance * 0.0393701); //Convert mm to inches

 //Variable to hold converted distance measurement (inches to feet)

 //float distanceFeet = distanceInches / 12.0; //Convert inches to feet

 val = analogRead(tempPin); //Get temperature from TI sensor

 float mv = (val/1023.0)*5000; //Convert raw ADC data to voltage value

 float cel = mv/10; //Convert voltage to degree Celsius

 Serial.print(" Temperature (C): ");

 Serial.println(cel);

 lcd.setCursor(0, 0); //Set display cursor

 lcd.print("DIST (mm): ");

 lcd.print(distance,0);

 lcd.setCursor(0, 1); //Set display cursor

 // print ambient temp

119

 lcd.print("TEMP (C): ");

 lcd.print(cel,1);

}

120

Appendix B: ROI Calibration Code

#include <SparkFun_VL53L1X.h> //SparkFun ST VL53L1A shield Library:

http://librarymanager/All#SparkFun_VL53L1X

#include <Wire.h> //Allows Arduino boards to communicate with I2C/TWI Devices.

SFEVL53L1X distanceSensor; //Initializes ST VL53L1X distance sensor.

//Uncomment the following line to use the optional shutdown and interrupt pins.

//SFEVL53L1X distanceSensor(Wire, SHUTDOWN_PIN, INTERRUPT_PIN); //Not

currently used

//Variables

int val; //Raw ADC temperature value

int tempPin = A0; //Analog pin connected to TI temperature sensor

int dist = 352; //Actual distance to float

int ROIcent = 0;

void setup(void)

{

 Wire.begin(); //Initialize I2C BUS

 Serial.begin(115200); //Initialize Serial BUS for troubleshooting.

 //Verifies ST VL53L1 sensor is wired correctly. Begin returns 0 on a good init

 if (distanceSensor.begin() != 0)

 {

 Serial.println("Sensor failed to begin. Please check wiring. Freezing...");

 while (1);

 }

 Serial.println("Sensor online!");

 //Serial.println(distanceSensor.getSignalPerSpad());

 }

void loop(void)

{

121

 distanceSensor.setROI(4, 4, ROIcent); //Sets the VL53L1's Range of Interest (receiver

grid size)

 //Sets the VL53L1 timing budget which is the amount of time (ms) over which a

measurement is taken

 distanceSensor.setTimingBudgetInMs(200);

 // Sets the period in between measurements. Must be greater than or equal to the timing

budget. Default is 100 ms.

 //distanceSensor.setIntermeasurementPeriod(4000);

 //Sets the VL53L1's distance measurement mode Short = 1.3m Long = 4m

 distanceSensor.setDistanceModeLong();

 float distance = 0; //Variable to hold distance measurement data

 distanceSensor.startRanging(); //Write configuration bytes to initiate measurement

 //Serial.println(distanceSensor.getSignalPerSpad());

 for (int i=0; i < 500; i++) //Loop to take 10 measurements to get the average

measurement

 {

 while (!distanceSensor.checkForDataReady()) //Checks if a measurement is ready

 {

 delay(1);

 }

 distance = distance + distanceSensor.getDistance(); //Get the result of the measurement

in mm from the sensor

 }

 distance = distance/500; //Calculate the average

 distanceSensor.clearInterrupt(); //Clears interrupt caused by the .getDistance command.

 distanceSensor.stopRanging(); //Stop taking measurements

 //Serial.print(" ROI: ");

 //Serial.println(ROIcent);

 while (distance >= 111 && distance <= 113)

 {

 Serial.print("ROI Good: ");

122

 Serial.println(ROIcent);

 delay(1000);

 break;

 }

 while (ROIcent == 255)

 {

 Serial.print("Stop");

 }

 ROIcent = ROIcent + 1;

}

123

Appendix C: MSE Capstone LLI Test Plan Rev 2.0

This appendix features a copy of the test plan for the TOF - based LLI that is the focus of

the MSE Capstone Project.

124

125

126

127

128

129

130

131

132

133

134

135

Appendix D: LLI Firmware Rev 2.0

/*

Reading distance from the laser-based ST Microelectronics VL53L1X sensor and

temperature from the TI LM35 temperature sensor.

By: Ian Stumpe

MSOE MSE Capstone Project

Date: December 10, 2022

License: This code is public domain but you buy me a beer if you use this and we meet

someday (Beerware license).

*/

#include <SparkFun_VL53L1X.h> //SparkFun ST VL53L1A shield Library:

http://librarymanager/All#SparkFun_VL53L1X

#include <Wire.h> //Allows Arduino boards to communicate with I2C/TWI Devices.

#include <Adafruit_RGBLCDShield.h> //Adafruit RGB LCD Shield Library:

https://learn.adafruit.com/rgb-lcd-shield

#include <avr/sleep.h> //this AVR library contains the methods that control the sleep

modes

//Copyright (c) 2019 Luis Llamas

#include <InterpolationLib.h> //This library contains the methods that interpolate agent

density based on temperature

// The Adafruit RGBLCD Shield uses the I2C SCL and SDA pins.

Adafruit_RGBLCDShield lcd = Adafruit_RGBLCDShield();

136

//Optional interrupt and shutdown pins.

#define SHUTDOWN_PIN 2

#define INTERRUPT_PIN 3

// These #defines set the backlight color of the Adafruit RGB LCD Display

#define OFF 0x0

#define RED 0x1

#define YELLOW 0x3

#define GREEN 0x2

#define TEAL 0x6

#define BLUE 0x4

#define VIOLET 0x5

#define WHITE 0x7

#define interruptPin 2 //Pin we are going to use to wake up the Arduino

SFEVL53L1X distanceSensor; //Initializes ST VL53L1X distance sensor.

//Uncomment the following line to use the optional shutdown and interrupt pins.

//SFEVL53L1X distanceSensor(Wire, SHUTDOWN_PIN, INTERRUPT_PIN); //Not

currently used

//Variables

int val; //Raw ADC temperature value

int tempPin = A0; //Analog pin connected to TI temperature sensor

//float olddistance = 100; //Variable for tracking old distance measurement

/*

//FM-200 agent density (kg/m^3) values based on temperature (C)

137

const int numValues = 24;

double xValues[24] = { -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70,

75, 80, 85, 90, 95, 100}; // Temperature values

double yValues[24] = { 1539.7, 1522.1, 1504.2, 1486.0, 1467.3, 1448.2, 1428.6, 1408.4,

1387.7, 1366.2, 1344.0, 1320.9, 1296.7, 1271.4, 1244.8, 1216.5, 1186.2, 1153.6, 1117.9,

1078.2, 1032.8, 978.6, 907.8, 786.8}; //Density values

*/

//Water density (g/cm^3) values based on temperature (C)

const int numValues = 15;

double xValues[24] = { 0.00, 4.00, 4.40, 10.00, 15.60, 21.00, 26.70, 32.20, 37.80, 48.90,

60.00, 71.10, 82.20, 93.30, 100.00}; // Temperature values

double yValues[24] = { 0.99987, 1.00, 0.99999, 0.99975, 0.99907, 0.99802, 0.99669,

0.9951, 0.99318, 0.9887, 0.98338, 0.97729, 0.97056, 0.96333, 0.95865}; //Density values

(g/cm^3)

//Tank size and shape cylinder (5gal pail

float radius = 136.5; //mm 136.5 142.875

float thickness = 0.0; //mm

float height = 398.0; //mm 406.4 402 346

void setup(void)

{

 Wire.begin(); //Initialize I2C BUS

 lcd.begin(16, 2); //Initialize LCD Display, sets LCD's number of columns and rows.

 lcd.setBacklight(WHITE); //Set LCD backlight color

138

 Serial.begin(115200); //Initialize Serial BUS for troubleshooting.

 /* //Used for putting the LCD in sleep mode and waking it up.

 pinMode(LED_BUILTIN,OUTPUT);

 pinMode(LED_BUILTIN,HIGH);

 pinMode(interruptPin, INPUT_PULLUP);

 */

 //Verifies ST VL53L1 sensor is wired correctly. Begin returns 0 on a good init

 if (distanceSensor.begin() != 0)

 {

 Serial.println("Sensor failed to begin. Please check wiring. Freezing...");

 while (1);

 }

 Serial.println("Sensor online!");

 distanceSensor.setROI(4, 4, 230); //Sets the VL53L1's Range of Interest (receiver grid

size)

 //Sets the VL53L1 timing budget which is the amount of time (ms) over which a

measurement is taken

 distanceSensor.setTimingBudgetInMs(200);

 // Sets the period in between measurements. Must be greater than or equal to the timing

budget. Default is 100 ms.

 //distanceSensor.setIntermeasurementPeriod(4000);

 //Sets the VL53L1's distance measurement mode Short = 1.3m Long = 4m

 distanceSensor.setDistanceModeShort();

139

}

void loop(void)

{

 float distance = 0; //Variable to hold distance measurement data

 distanceSensor.startRanging(); //Write configuration bytes to initiate measurement

 for (int i=0; i < 1000; i++) //Loop to take 10 measurements to get the average

measurement

 {

 while (!distanceSensor.checkForDataReady()) //Checks if a measurement is ready

 {

 delay(1);

 }

 distance = distance + distanceSensor.getDistance(); //Get the result of the measurement

in mm from the sensor

 //Serial.println(distanceSensor.getSignalPerSpad());

 }

 distanceSensor.clearInterrupt(); //Clears interrupt caused by the .getDistance command.

 distanceSensor.stopRanging(); //Stop taking measurements

 Serial.print("SUM: ");

 Serial.print(distance);

 distance = distance/1000; //Calculate the average

 Serial.print(" AVG: ");

 Serial.print(distance);

140

 //calculate volume in mm

 float volume = 3.14 * (sq(radius - thickness)) * (height - distance); //mm^3

 Serial.print(" Volume (mm3): ");

 Serial.print(volume);

 /*

 //FM-200

 //Variable to hold converted distance measurement (mm to meters)

 float volumeM = (volume / 1000000000); //Convert mm^3 to m^3

 Serial.print(" Volume (m): ");

 Serial.print(volumeM,5);

*/

 //Water

 //Variable to hold converted distance measurement (mm to cm)

 float volumeM = (volume / 1000); //Convert mm^3 to cm^3

 Serial.print(" Volume (cm3): ");

 Serial.print(volumeM,5);

 val = analogRead(tempPin); //Get temperature from TI sensor

 //Uncomment the next two lines if Black POC is being used. Black POC uses LM35

temp sensor which converts voltage straight to C

 float mv = (val/1023.0)*5000; //Convert raw ADC data to voltage value

 float cel = mv/10; //Convert voltage to degree Celsius, Used for Black POC

 // Uncomment the next two lines if RED POC is being used. Red POC uses LM355

which converts voltage to kelvin requiring an extra conversion to C

141

 //float kelvin = mv/10.0; //Convert voltage to kelvin

 //float cel = kelvin - 273.0; //Convert kelvin to C, used for Red POC

 double density = Interpolation::Linear(xValues, yValues, numValues, cel, true); //prints

agent density

 //Serial.print(" Density (kg/m^3): ");

 //Serial.print(" Density (g/mm^3): ");

 Serial.print(" Density (g/cm^3): ");

 Serial.print(density);

 //calculate mass of agent

 float mass = density * volumeM;

 //float mass = density * volume;

 //Serial.print(" Mass (kg): ");

 Serial.print(" Mass (g): ");

 Serial.println(mass,2);

 //print ambient temp

 lcd.setCursor(0, 0); //Set display cursor

 lcd.print("TEMP (C): ");

 lcd.print(cel,1);

 //print agent mass/weight

 lcd.setCursor(0, 1); //Set display cursor

 //lcd.print("Mass (kg): ");

 lcd.print("Mass (g): ");

 lcd.print(mass,2); }

142

Appendix E: LLI Firmware with Interrupt Rev 1.0

/*

Reading distance from the laser-based ST Microelectronics VL53L1X sensor and

temperature from the TI LM35 temperature sensor.

By: Ian Stumpe

MSOE MSE Capstone Project

Date: December 10, 2022

License: This code is public domain, but you buy me a beer if you use this and we meet

someday (Beerware license).

*/

#include <Wire.h>

#include "SparkFun_VL53L1X.h" //Click here to get the library:

http://librarymanager/All#SparkFun_VL53L1X

#include <Adafruit_RGBLCDShield.h>

#include <utility/Adafruit_MCP23017.h>

#include <avr/sleep.h> //this AVR library contains the methods that control the sleep

modes

// The shield uses the I2C SCL and SDA pins. On classic Arduinos

// this is Analog 4 and 5 so you can't use those for analogRead() anymore

// However, you can connect other I2C sensors to the I2C bus and share

// the I2C bus.

Adafruit_RGBLCDShield lcd = Adafruit_RGBLCDShield();

//Optional interrupt and shutdown pins.

#define SHUTDOWN_PIN 2//not used

#define INTERRUPT_PIN 3

// These #defines make it easy to set the backlight color

#define OFF 0x0

#define RED 0x1

#define YELLOW 0x3

#define GREEN 0x2

#define TEAL 0x6

143

#define BLUE 0x4

#define VIOLET 0x5

#define WHITE 0x7

#define interruptPin 2 //Pin we are going to use to wake up the Arduino

SFEVL53L1X distanceSensor;

//Uncomment the following line to use the optional shutdown and interrupt pins.

//SFEVL53L1X distanceSensor(Wire, SHUTDOWN_PIN, INTERRUPT_PIN);

int val;

int tempPin = A0;

void setup(void)

{

 Wire.begin();

 lcd.begin(16, 2);

 lcd.setBacklight(OFF);

 Serial.begin(115200);

 pinMode(LED_BUILTIN,OUTPUT);

 pinMode(interruptPin, INPUT_PULLUP);

 pinMode(LED_BUILTIN,HIGH);

 // set up the LCD's number of columns and rows:

 if (distanceSensor.begin() != 0) //Begin returns 0 on a good init

 {

 Serial.println("Sensor failed to begin. Please check wiring. Freezing...");

 while (1);

 }

 Serial.println("Sensor online!");

 distanceSensor.setROI(4, 4, 71);

 distanceSensor.setTimingBudgetInMs(500);

 //distanceSensor.setIntermeasurementPeriod(2000);

 distanceSensor.setDistanceModeShort();

}

void loop(void)

144

{

 delay(5000); //wait 5 seconds before going to sleep

 Going_To_Sleep();

}

void Going_To_Sleep()

{

 sleep_enable();

 attachInterrupt(digitalPinToInterrupt(interruptPin), wakeUp, LOW);

 set_sleep_mode(SLEEP_MODE_PWR_DOWN);

 digitalWrite(LED_BUILTIN,LOW);

 lcd.clear();

 lcd.setBacklight(OFF);

 delay(1000);

 sleep_cpu();

 digitalWrite(LED_BUILTIN,HIGH);

 distanceSensor.startRanging(); //Write configuration bytes to initiate measurement

 delay(2000);

 while (!distanceSensor.checkForDataReady())

 {

 delay(1);

 }

 int distance = distanceSensor.getDistance(); //Get the result of the measurement from

the sensor

 distanceSensor.clearInterrupt();

 distanceSensor.stopRanging();

 //float distanceT = map(distance,0,914.4,914.4,0);

 float distanceInches = (distance * 0.0393701);

 float distanceFeet = distanceInches / 12.0;

 val = analogRead(tempPin);

 float mv = (val/1023.0)*5000;

145

 float cel = mv/10;

 lcd.setBacklight(WHITE);

 lcd.setCursor(0, 0);

 // print the number of seconds since reset

 lcd.print("DIST(in): ");

 lcd.print(distanceInches, 3);

 lcd.setCursor(0, 1);

 // print the number of seconds since reset:

 lcd.print("TEMP (C): ");

 lcd.print(cel);

}

void wakeUp()

{

 sleep_disable();

 detachInterrupt(digitalPinToInterrupt(interruptPin));

 }

146

Appendix F: ROI Center-Point Calibration Data

Table F- 2: ROI Center-Point Calibration Measurement Data

230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp 230cp 204cp 228cp 196cp

350.21 351 351.45 349 300.22 299.89 301.22 301.11 250.34 250.44 251.22 252.55 201.34 201.78 201.89 202.22 151.11 154.55 153.33 153.55 102 99.22 99.9 99.22

350.22 351 351.34 348.89 300.22 299.56 301.22 301.11 250.56 250.45 250.79 252.78 202.46 201.56 201.99 201.89 151.32 154 153.22 153.56 102.11 99.33 99.89 99.33

350.44 350.89 351.55 349.11 300.11 300.22 301.22 301.11 250.66 250.44 250.9 252.77 201.89 201.23 201.55 201.67 151.9 154.56 153.11 153.23 101.99 99.11 99.78 99.79

350.44 351.11 351.45 348.66 300.45 300 301 300.89 250.45 250.34 251.11 252.78 201.68 201.99 201.77 201.33 151.79 154.66 153.33 153.56 102 99.22 99.78 99.33

350.44 350.78 351.34 348.89 300.33 300.11 301.22 301.11 250.66 250.33 251.33 253 200.77 201.67 201.44 201.34 152 154.34 153.11 153.56 101.89 99.11 99.67 99.55

350.34 350.78 351.45 348.89 300.1 300 301.22 301.22 250.55 250.34 250.89 252.67 201 201.77 201.55 201.44 151.77 154.44 152.89 153.44 101.89 99.1 99.78 99.66

350.55 350.89 351.56 348.89 300.55 299.89 301 301.34 250.56 250.45 250.89 252.89 201.34 201.89 202 201.56 151.33 154.66 153.34 153.22 102 99.45 99.77 99.77

350.34 351.01 351.22 348.78 300.34 300 301.22 301.22 250.55 250.33 251 252.77 201.67 201.55 201.77 201.67 151.37 154.66 153.33 153.78 102 99.45 99.55 99.89

350.34 350.9 351.45 348.99 300.22 299.66 301.45 301.1 250.89 250.34 251.11 252.79 202.2 201.44 202 201.45 150.69 154.22 153.11 153.77 102.11 99 99.66 99.55

350.56 350.78 351.45 348.89 300.22 299.9 301.11 300.89 250.44 250.45 250.89 252.89 201.42 201.67 201.77 201.66 152 154.34 153.11 153.44 101.89 99 99.78 100.01

350.56 350.78 351.55 348.89 300.34 299.78 301.22 301.11 250.55 250.45 250.78 252.66 201.57 201.9 201.66 201.34 151.77 154.34 152.89 153.56 101.89 99.44 99.78 99.77

350.44 350.78 351.45 348.89 300.11 299.66 301.34 301 251 250.34 251.11 252.89 201.46 201.78 202.21 201.77 151.44 154.34 153.45 153.66 101.89 99.66 99.34 99.99

350.33 351.11 351.55 349.33 300.45 299.78 301.55 301.22 250.89 250.44 251.11 252.55 200.98 201.78 202.22 201.79 151.67 154.45 152.89 153.45 102 99.22 100 99.9

350.22 350.89 351.66 349.22 300 299.78 301.22 301.11 250.79 250.45 250.78 252.79 201.46 201.67 201.89 202.11 151.44 154.66 153.11 153.56 102 99.34 99.89 100

350.33 350.89 351.44 348.89 300.45 299.78 301.11 301.1 250.55 250.45 250.66 253 201 202.11 202 202.11 150.99 154.45 153.22 153.45 102 99.34 100.12 99.78

350.67 351.11 351.44 348.89 300.22 299.89 301.34 301.34 250.55 250.22 251 253.01 201.57 201.78 201.89 202.01 150.88 154.66 153.11 153.45 102 99.34 100 100.1

350.11 350.89 351.45 348.78 300.11 299.78 301 301.34 250.88 250.56 251.01 252.66 200.89 201.78 201.89 202.34 150.78 154.66 153.22 153.66 102 99.67 99.78 100.22

350.11 350.9 351.33 348.56 300.34 300 301.34 301.1 251 250.34 250.77 252.76 201.34 201.56 201.89 202.56 151.77 154.44 152.89 153.45 101.9 99.55 99.67 99.9

350.34 350.89 351.45 349 300.66 299.89 301.23 301.11 251.01 250.33 250.78 252.55 201.65 201.56 201.89 202.33 151.23 154.44 153 153.33 102 99.66 100 99.78

350.22 351 351.33 349 300.34 299.89 301.34 301.45 250.89 250.45 250.79 252.56 201.12 201.45 202 202.67 151.89 154.56 152.78 153.55 102 99.22 99.9 100.11

350.34 350.78 351.56 348.89 300.45 299.89 301.22 301 251 250.22 250.77 252.45 200.9 202 201.66 202.45 151.78 154.67 152.89 153.34 101.78 99.33 100 100.11

350.78 350.89 351.45 348.9 300.11 299.66 301.22 301 250.9 250.45 250.89 252.89 200.44 201.89 202 202.45 151.48 154.66 152.99 153.55 102 99.45 99.89 100

350.67 350.78 351.34 349 300.11 299.89 300.89 300.9 251.11 250.34 250.89 252.89 200.45 202.1 201.89 202.55 150.92 154.45 152.89 153.34 102 99.22 100.11 99.78

350.56 350.67 351.56 348.89 300.44 299.56 301.22 301 251 250.45 250.89 252.77 201.79 202.01 202 202.23 151 154.66 153.11 153.45 101.89 99.11 99.89 99.56

350.44 350.89 351.56 349 300.45 299.78 301.11 301.11 251.11 250.11 250.78 252.67 201.22 201.78 201.89 201.89 151.67 154.66 153.22 153.45 101.89 99.44 99.9 99.99

350.22 350.45 351.66 349.1 300.22 299.89 301.11 301.45 251.01 250.34 250.78 252.9 201.46 201.89 201.89 202.23 151.33 154.78 152.89 153.44 101.89 99.22 100.11 99.78

350.22 350.45 351.44 349.11 300.44 299.55 301.22 301.11 250.78 250.22 250.79 252.99 201.45 201.66 202 201.89 151.22 154.89 152.89 153.23 101.89 99.34 99.79 99.9

350.55 350.55 351.34 348.89 300.44 300 301.34 301.11 250.89 250.45 251.22 252.88 201 201.77 202 201.56 151.21 154.55 152.78 153.34 102 99.45 99.67 100

350.66 350.89 351.44 348.89 300.44 299.78 301.33 301 250.9 250.45 250.79 252.89 201.12 201.66 202.22 201.78 151.78 154.89 152.89 153.55 102 99.22 99.56 100.22

350.11 350.44 351.34 349.22 300.33 300 301.11 301.11 250.78 250 251 252.89 200.77 202 201.66 200.99 151.55 154.66 152.89 153.1 101.89 99.11 99.34 100.11

Distance = 152 ±1 Distance = 102 ±1Distance = 352 Distance = 301 ±1 Distance = 252 ±1 Distance = 202 ±1

A
p

p
en

d
ix

 F
: R

O
I C

en
ter

-P
o
in

t C
a

lib
ra

tio
n

 D
a

ta

T
ab

le F
- 1

: R
O

I C
en

ter-P
o

in
t C

alib
ratio

n
 M

easu
rem

en
t D

ata
.

1
4
6

147

Appendix G: LLI Tube Assembly Drawing

A
p

p
en

d
ix

 G
: L

L
I T

u
b

e A
ssem

b
ly

 D
ra

w
in

g

1
4
7

148

Appendix H: LLI External Float Assembly

A
p

p
en

d
ix

 H
: L

L
I E

x
tern

a
l F

lo
a

t A
ssem

b
ly

1
4
8

149

Appendix I: LLI Internal Float Assembly

1
4
9

A
p

p
en

d
ix

 I: L
L

I In
tern

a
l F

lo
a
t A

ssem
b

ly

150

Appendix J: Serial_Comms_Rev_5

#include<EEPROM.h>

//User menu variables

int Agent = 0; //stored in EEPROM address 0

int Units = 0; //stored in EEPROM address 4

float radius = 0; //stored in EEPROM address 8

float thickness = 0; //stored in EEPROM address 12

float height = 0; //stored in EEPROM address 16

int Display = 0; //stored in EEPROM address 20

int Interval = 0; //stored in EEPROM address 24

int Recording = 0; //stored in EEPROM address 28

int Year = 0; //stored in EEPROM address 32

int Month = 0; //stored in EEPROM address 33

int Day = 0; //stored in EEPROM address 34

double Time = 0; //stored in EEPROM address 35

int eeAddress = 0;

//User menu function

void devicemenu()

{

 //User menu

 Serial.println("1. Agent Type");

 Serial.println("2. Measurement Units");

 Serial.println("3. Storage Cylinder Dimensions");

151

 Serial.println("4. Display Data");

 Serial.println("5. Measurement Interval");

 Serial.println("6. Data Recording");

 Serial.println("7. Set Date");

 Serial.println("8. Set Time");

 Serial.println("Enter Menu Number? ");

 while (Serial.available() == 0) //Waiting for user input

 {

 }

 //Reading user input from serial stream

 int menuChoice = Serial.parseInt(SKIP_WHITESPACE,'\r');

 switch (menuChoice) //Displays submenu option based on user selected menu option

 {

 case 1:

 {

 // Agent Type Submenu

 bailoutA:

 Serial.println("Agent Type:");

 Serial.println("1. FM200");

 Serial.println("2. Novec 1230");

 Serial.println("3. Water");

 while (Serial.available() == 0); //Waiting for user input

 {

152

 }

 //Reading user input from serial stream

 Agent = Serial.parseInt(SKIP_WHITESPACE,'\r');

 //Verifies user input is a valid menu option.

 //If it is, the variable is set.

 //If the menu option is invalid error message is sent to

 //serial terminal and submenu is redisplayed.

 if (Agent >= 1 && Agent <= 3)

 {

 Serial.print("Agent Type: ");

 Serial.println(Agent);

 eeAddress = 0;

 EEPROM.put(eeAddress,Agent);

 break;

 }

 else

 {

 Serial.println("Error setting must be 1, 2 or 3");

 Agent = 0;

 goto bailoutA;

 }

 }

 case 2:

153

 {

 // Measurement Units Submenu

 bailoutB:

 Serial.println("Measurement Units:");

 Serial.println("1. Metric");

 Serial.println("2. US Imperial");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 Units = Serial.parseInt(SKIP_WHITESPACE,'\r');

 //Verifies user input is a valid menu option.

 //If it is, the variable is set.

 //If the menu option is invalid error message is sent

 //to serial terminal and submenu is redisplayed.

 if (Units >= 1 && Units <= 2)

 {

 Serial.print("Units Set To: ");

 Serial.println(Units);

 eeAddress = 4;

 EEPROM.put(eeAddress,Units);

 break;

 }

154

 else

 {

 Serial.println("Error setting must be 1 or 2");

 Units = 0;

 goto bailoutB;

 }

 }

 case 3:

 {

 // Cylinder Dimensions Submenu

 // Verifies that the measurement units have been set.

 // If they have not, function redirects user to the Measurement Units submenu

 if (Units == 1)

 {

 Serial.println("Cylinder Radius (mm): RR");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 radius = Serial.parseFloat(SKIP_WHITESPACE,'\r');

 Serial.print("Cylinder Radius is: ");

 Serial.println(radius);

 eeAddress = 8;

155

 EEPROM.put(eeAddress,radius);

 Serial.println("Cylinder Thickness (mm): TT");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 thickness = Serial.parseFloat(SKIP_WHITESPACE,'\r');

 Serial.print("Cylinder Thickness is: ");

 Serial.println(thickness);

 eeAddress = 12;

 EEPROM.put(eeAddress,thickness);

 Serial.println("Cylinder Height (mm): HH");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 height = Serial.parseFloat(SKIP_WHITESPACE,'\r');

 Serial.print("Cylinder Height is: ");

 Serial.println(height);

 eeAddress = 16;

 EEPROM.put(eeAddress,height);

 break;

 }

156

 else if (Units == 2)

 {

 Serial.println("Cylinder Radius (in): RR.R");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 radius = Serial.parseFloat(SKIP_WHITESPACE,'\r');

 Serial.print("Cylinder Radius is: ");

 Serial.println(radius);

 radius = radius * 25.4; //convert inch to mm

 eeAddress = 8;

 EEPROM.put(eeAddress,radius);

 Serial.println("Cylinder Thickness (in): TT.T");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 thickness = Serial.parseFloat(SKIP_WHITESPACE,'\r');

 Serial.print("Cylinder Thickness is: ");

 Serial.println(thickness);

 thickness = thickness * 25.4; //convert inch to mm

157

 eeAddress = 12;

 EEPROM.put(eeAddress,thickness);

 Serial.println("Cylinder Height (in): HH.H");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 height = Serial.parseFloat(SKIP_WHITESPACE,'\r');

 Serial.print("Cylinder Height is: ");

 Serial.println(height);

 height = height * 25.4; //convert inch to mm

 eeAddress = 16;

 EEPROM.put(eeAddress,height);

 break;

 }

 else

 {

 Serial.println("Measurement Units are not set");

 goto bailoutB;

 }

 }

 case 4:

 {

158

 // Display Refresh Rate

 bailoutC:

 Serial.println("Display Refresh Rate:");

 Serial.println("1. Continuous");

 Serial.println("2. Single");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 Display = Serial.parseInt(SKIP_WHITESPACE,'\r');

 //Verifies user input is a valid menu option.

 //If it is, the variable is set.

 //If the menu option is invalid error message is sent to serial

 //terminal and submenu is redisplayed.

 if (Display >= 1 && Display <= 2)

 {

 Serial.print("Display Refresh Rate Set To: ");

 Serial.println(Display);

 eeAddress = 20;

 EEPROM.put(eeAddress,Display);

 break;

 }

 else

159

 {

 Serial.println("Error setting must be 1 or 2");

 Display = 0;

 goto bailoutC;

 }

 }

 case 5:

 {

 // Measurement Interval

 bailoutD:

 Serial.println("Measurement Interval:");

 Serial.println("1. 1s");

 Serial.println("2. 15min");

 Serial.println("3. 30min");

 Serial.println("4. 1hr");

 Serial.println("5. 3hrs");

 Serial.println("6. 6hrs");

 Serial.println("7. 12hrs");

 Serial.println("8. 24hrs");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

160

 Interval = Serial.parseInt(SKIP_WHITESPACE,'\r');

 //Verifies user input is a valid menu option.

 //If it is, the variable is set.

 //If the menu option is invalid error message is sent to

 //serial terminal and submenu is redisplayed.

 if (Interval >= 1 && Interval <= 8)

 {

 Serial.print("Measurement Interval Set To: ");

 Serial.println(Interval);

 eeAddress = 24;

 EEPROM.put(eeAddress,Interval);

 break;

 }

 else

 {

 Serial.println("Error setting must be 1 thru 8");

 Interval = 0;

 goto bailoutD;

 }

 }

 case 6:

 {

 // Data Recording

161

 bailoutE:

 Serial.println("Data Recording:");

 Serial.println("1. Off");

 Serial.println("2. On");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 Recording = Serial.parseInt(SKIP_WHITESPACE,'\r');

 //Verifies user input is a valid menu option.

 //If it is, variable is set.

 //If the menu option is invalid error message is sent to

 //serial terminal and submenu is redisplayed.

 if (Recording >= 1 && Recording <= 2)

 {

 Serial.print("Data Recording Is: ");

 Serial.println(Recording);

 eeAddress = 28;

 EEPROM.put(eeAddress, Recording);

 break;

 }

 else

 {

162

 Serial.println("Error setting must be 1 or 2");

 Recording = 0;

 goto bailoutE;

 }

 }

 case 7:

 {

 // Set Date

 bailoutF:

 Serial.println("Enter Year: yyyy");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 Year = Serial.parseInt(SKIP_WHITESPACE,'\r');

 eeAddress = 32;

 EEPROM.put(eeAddress, Year);

 delay(10);

 Serial.println("Enter Month: mm");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

163

 Month = Serial.parseInt(SKIP_WHITESPACE,'\r');

 eeAddress = 34;

 EEPROM.put(eeAddress, Month);

 Serial.println("Enter Day: dd");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

 Day = Serial.parseInt(SKIP_WHITESPACE,'\r');

 eeAddress = 36;

 EEPROM.put(eeAddress, Day);

 bailoutG:

 Serial.print(F("You entered: "));

 Serial.print(Year);

 Serial.print(F(" : "));

 Serial.print(Month);

 Serial.print(F(" : "));

 Serial.println(Day);

 Serial.println(F("Is that correct? Yes(1) No(2)"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 //Reading user input from serial stream

164

 int answer = Serial.parseInt(SKIP_WHITESPACE,'\r');

 if (answer == 1)

 {

 break;

 }

 else if (answer == 2)

 {

 goto bailoutF;

 }

 else

 {

 Serial.println("Error entry must be 1 or 2");

 answer = 0;

 goto bailoutG;

 }

 }

 case 8:

 {

 // Set Time

 Serial.println("Enter Time (24hr): hhmmss");

 while (Serial.available() == 0); //Waiting for user input

 {

 }

165

 //Reading user input from serial stream

 Time = Serial.parseFloat(SKIP_WHITESPACE,'\r');

 Serial.print("Time Set To: ");

 Serial.println(Time, 0);

 eeAddress = 38;

 EEPROM.put(eeAddress, Time);

 break;

 }

 default:

 {

 Serial.println("Please choose a valid selection");

 break;

 }

 }

}

void setup()

{

 Serial.begin(9600);

 Serial.println(F("Clear EEPROM Yes(1) or No(2)"));

 while (Serial.available() == 0) //Waiting for user input

 {

 }

 int Clear = Serial.parseInt(SKIP_WHITESPACE,'\r');

166

 switch (Clear) //Clear the EEPROM

 {

 case 1:

 {

 for (int i = 0 ; i < EEPROM.length() ; i++)

 {

 EEPROM.write(i, 0);

 }

 Serial.println(F("Clear Complete"));

 break;

 }

 case 2:

 {

 Serial.println(F("Clear Skipped"));

 break;

 }

 }

 eeAddress = 0;

 EEPROM.get(eeAddress,Agent);

 eeAddress = 4;

 EEPROM.get(eeAddress,Units);

 eeAddress = 8;

 EEPROM.get(eeAddress,radius);

167

 eeAddress = 12;

 EEPROM.get(eeAddress,thickness);

 eeAddress = 16;

 EEPROM.get(eeAddress,height);

 eeAddress = 20;

 EEPROM.get(eeAddress,Display);

 eeAddress = 24;

 EEPROM.get(eeAddress,Interval);

 eeAddress = 28;

 EEPROM.get(eeAddress,Recording);

 eeAddress = 32;

 EEPROM.get(eeAddress,Year);

 eeAddress = 34;

 EEPROM.get(eeAddress,Month);

 eeAddress = 36;

 EEPROM.get(eeAddress,Day);

 eeAddress = 38;

 EEPROM.get(eeAddress,Time);

}

void loop()

{

 //Verifying that device settings have been entered. If settings are not set, run device

menu function

168

 while (Agent == 0 || Units == 0 || radius == 0 || thickness == 0 || height == 0 || Display

== 0 || Interval == 0 || Recording == 0 || Year == 0 || Month == 0 || Day == 0 || Time ==

0)

 {

 devicemenu();

 }

 Serial.println("Device setup complete");

 Serial.println("Run Program");

 int Af = 0;

 eeAddress = 0;

 EEPROM.get(eeAddress,Af);

 Serial.println(Af);

 int Uf = 0;

 eeAddress = 4;

 EEPROM.get(eeAddress,Uf);

 Serial.println(Uf);

 float rf = 0;

 eeAddress = 8;

 EEPROM.get(eeAddress,rf);

 Serial.println(rf);

 float tf = 0;

 eeAddress = 12;

 EEPROM.get(eeAddress,tf);

169

 Serial.println(tf);

 float hf = 0;

 eeAddress = 16;

 EEPROM.get(eeAddress,hf);

 Serial.println(hf);

 int Df = 0;

 eeAddress = 20;

 EEPROM.get(eeAddress,Df);

 Serial.println(Df);

 int If = 0;

 eeAddress = 24;

 EEPROM.get(eeAddress,If);

 Serial.println(If);

 int Rf = 0;

 eeAddress = 28;

 EEPROM.get(eeAddress,Rf);

 Serial.println(Rf);

 int Yf = 0;

 eeAddress = 32;

 EEPROM.get(eeAddress,Yf);

 Serial.println(Yf);

 int Mf = 0;

 eeAddress = 34;

170

 EEPROM.get(eeAddress,Mf);

 Serial.println(Mf);

 int DDf = 0;

 eeAddress = 36;

 EEPROM.get(eeAddress,DDf);

 Serial.println(DDf);

 double Tf = 0;

 eeAddress = 38;

 EEPROM.get(eeAddress, Tf);

 Serial.println(Tf);

 Serial.println(Agent);

 Serial.println(Units);

 Serial.println(radius);

 Serial.println(thickness);

 Serial.println(height);

 Serial.println(Display);

 Serial.println(Interval);

 Serial.println(Recording);

 Serial.println(Year);

 Serial.println(Month);

 Serial.println(Day);

 Serial.println(Time);

 delay(20000);

171

}

172

Appendix K: LLI Firmware with User Interface Rev 8

/*

 Reading distance from the laser-based ST Microelectronics VL53L1X sensor and

temperature from the TI LM35 temperature sensor.

 By: Ian Stumpe

 MSOE MSE Capstone Project

 Date: May 5, 2023

 License: This code is public domain, but you buy me a beer if you use this and we meet

someday (Beerware license).

*/

#include <SparkFun_VL53L1X.h> //SparkFun ST VL53L1X shelied Library:

http://librarymanager/All#SparkFun_VL53L1X

#include <Wire.h> //Allows Arduino boards to communicate with I2C/TWI Devices.

#include <Adafruit_RGBLCDShield.h> //Adafruit RGB LCD Shield Library:

https://learn.adafruit.com/rgb-lcd-shield

#include <InterpolationLib.h> //This library contains the methods that interpolate agent

density based on temperature

#include<EEPROM.h>

#define BacklightOFF 0x0 //Turns the LCD backlight off

#define WHITE 0x7 //Define the backlight color of the Adafruit RGB LCD Display

#define RED 0x1 //Define the backlight color of the Adafruit RGB LCD Display

#define interruptPin 2 //Pin we are going to use to trigger interrupt to show data on the

Display

173

// The Adafruit RGBLCD Shield uses the I2C SCL and SDA pins.

Adafruit_RGBLCDShield lcd = Adafruit_RGBLCDShield();

SFEVL53L1X distanceSensor; //Initializes ST VL53L1X distance sensor.

//Global Variables

int tempPin = A0; //Analog pin connected to TI temperature sensor

//float olddistance = 100; //Variable for tracking old distance measurement

int Agent = 0; //User Menu variable stored in EEPROM address 0

int Units = 0; //User Menu variable stored in EEPROM address 4

float radius = 0; //User Menu variable stored in EEPROM address 8

float thickness = 0; //User Menu variable stored in EEPROM address 12

float height = 0; //User Menu variable stored in EEPROM address 16

int Display = 0; //User Menu variable stored in EEPROM address 20

int Interval = 0; //User Menu variable stored in EEPROM address 24

int Recording = 0; //User Menu variable stored in EEPROM address 28

int Year = 0; //stored in EEPROM address 32

int Month = 0; //stored in EEPROM address 34

int Day = 0; //stored in EEPROM address 36

double Time = 0; //stored in EEPROM address 38

int eeAddress = 0; //EEPROM address location variable, EEPROM address 44 and up for

datalogger

int EEaddress = 44; //EEPROM address location variable used for writing data to datalog

float temperature = 0; //holds temperature data

float mass = 0; //holds mass data

174

float oldMass = 0; //holds the first mass data point after power on for 5% limit check

float oldmass = 0; //used for data recording EEPROM addressing

volatile long int seconds = 0;

long int sampleRate = 0;

int record = 0;

void setup(void)

{

 Wire.begin(); //Initialize I2C BUS

 lcd.begin(16, 2); //Initialize LCD Display, sets LCD's number of columns and rows.

 lcd.setBacklight(WHITE); //Set LCD backlight color

 pinMode(interruptPin, INPUT_PULLUP);

 Serial.begin(9600); //Initialize Serial BUS for troubleshooting.

 Serial.println(F("Clear EEPROM Yes(1) or No(2)"));

 while (Serial.available() == 0) //Waiting for user input

 {

 }

 int Clear = Serial.parseInt(SKIP_WHITESPACE,'\r');

 switch (Clear) //Clear the EEPROM

 {

 case 1:

 {

 for (int i = 0 ; i < EEPROM.length() ; i++)

 {

175

 EEPROM.write(i, 0);

 }

 Serial.println(F("Clear Complete"));

 break;

 }

 case 2:

 {

 Serial.println(F("Clear Skipped"));

 break;

 }

 }

 //Check EEPROM for user setting

 eeAddress = 0;

 EEPROM.get(eeAddress,Agent);

 eeAddress = 4;

 EEPROM.get(eeAddress,Units);

 eeAddress = 8;

 EEPROM.get(eeAddress,radius);

 eeAddress = 12;

 EEPROM.get(eeAddress,thickness);

 eeAddress = 16;

 EEPROM.get(eeAddress,height);

 eeAddress = 20;

176

 EEPROM.get(eeAddress,Display);

 eeAddress = 24;

 EEPROM.get(eeAddress,Interval);

 eeAddress = 28;

 EEPROM.get(eeAddress,Recording);

 eeAddress = 32;

 EEPROM.get(eeAddress,Year);

 eeAddress = 34;

 EEPROM.get(eeAddress,Month);

 eeAddress = 36;

 EEPROM.get(eeAddress,Day);

 eeAddress = 38;

 EEPROM.get(eeAddress,Time);

 dataRecording(); //setting up data recording based on user setting

 //Verifies ST VL53L1 sensor is wired correctly. Begin returns 0 on a good init

 if (distanceSensor.begin() != 0)

 {

 Serial.println(F("Sensor failed to begin. Please check wiring. Freezing..."));

 while (1);

 }

 Serial.println(F("Sensor online!"));

 distanceSensor.setROI(4, 4, 196); //Sets the VL53L1's Range of Interest (receiver grid

size)

177

 //Sets the VL53L1 timing budget which is the amount of time (ms) over which a

measurement is taken

 distanceSensor.setTimingBudgetInMs(200);

 //Sets the VL53L1's distance measurement mode Short = 1.3m Long = 4m

 distanceSensor.setDistanceModeShort();

}

void loop(void)

{

 //Verifing that device settings have been entered. If settings are not set run device

menu function

 while (Agent == 0 || Units == 0 || radius == 0 || thickness == 0 || height == 0 || Display

== 0 ||

 Interval == 0 || Recording == 0 || Year == 0 || Month == 0 || Day == 0 || Time == 0)

 {

 devicemenu();

 }

 float distance = getdistance();

 float volume = getvolume(distance, radius, thickness, height);

 temperature = gettemp();

 mass = getmass(volume);

 displayRefresh();

 checkLimits();

 recordData();

178

}

void devicemenu()

{

 //User menu

 Serial.println(F("1. Agent Type"));

 Serial.println(F("2. Measurement Units"));

 Serial.println(F("3. Storage Cylinder Dimensions"));

 Serial.println(F("4. Display Data"));

 Serial.println(F("5. Measurement Interval"));

 Serial.println(F("6. Data Recording"));

 Serial.println(F("7. Set Date"));

 Serial.println(F("8. Set Time"));

 Serial.println(F("Enter Menu Number? "));

 while (Serial.available() == 0) //Waiting for user input

 {

 }

 int menuChoice = 0;

 menuChoice = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 switch (menuChoice) //Displays submenu option based on user selected menu option

 {

 case 1:

 {

179

 // Agent Type Submenu

 bailoutA:

 Serial.println(F("Agent Type:"));

 Serial.println(F("1. FM200"));

 Serial.println(F("2. Novec 1230"));

 Serial.println(F("3. Water"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Agent = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from serial

stream

 //Verifies user input is a valid menu option.

 //If it is, the variable is set.

 //If the menu option is invalid error message is sent to serial terminal and submenu is

redisplayed.

 if (Agent >= 1 && Agent <= 3)

 {

 Serial.print(F("Agent Type: "));

 Serial.println(Agent);

 eeAddress = 0;

 EEPROM.put(eeAddress,Agent);

 break;

 }

180

 else

 {

 Serial.println("Error setting must be 1, 2 or 3");

 Agent = 0;

 goto bailoutA;

 }

 }

 case 2:

 {

 // Measurement Units Submenu

 bailoutB:

 Serial.println(F("Measurement Units:"));

 Serial.println(F("1. Metric"));

 Serial.println(F("2. US Imperial"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Units = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 //Verifies user input is a valid menu option.

 //If it is the variable is set.

 //If the menu option is invalid error message is sent to serial terminal and submenu is

redisplayed.

181

 if (Units >= 1 && Units <= 2)

 {

 Serial.print(F("Units Set To: "));

 Serial.println(Units);

 eeAddress = 4;

 EEPROM.put(eeAddress,Units);

 break;

 }

 else

 {

 Serial.println(F("Error setting must be 1 or 2"));

 Units = 0;

 goto bailoutB;

 }

 }

 case 3:

 {

 // Cylinder Dimensions Submenu

 // Verifies that the measurement units have been set.

 // If they have not, function redirects user to the Measurement Units submenu

 if (Units == 1)

 {

 Serial.println(F("Cylinder Radius (mm): RR"));

182

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 radius = Serial.parseFloat(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 Serial.print(F("Cylinder Radius is: "));

 Serial.println(radius);

 eeAddress = 8;

 EEPROM.put(eeAddress,radius);

 Serial.println(F("Cylinder Thickness (mm): TT"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 thickness = Serial.parseFloat(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 Serial.print(F("Cylinder Thickness is: "));

 Serial.println(thickness);

 eeAddress = 12;

 EEPROM.put(eeAddress,thickness);

 Serial.println(F("Cylinder Height (mm): HH"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

183

 height = Serial.parseFloat(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 Serial.print(F("Cylinder Height is: "));

 Serial.println(height);

 eeAddress = 16;

 EEPROM.put(eeAddress,height);

 break;

 }

 else if (Units == 2)

 {

 Serial.println(F("Cylinder Radius (in): RR.R"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 radius = Serial.parseFloat(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 Serial.print(F("Cylinder Radius is: "));

 Serial.println(radius);

 radius = radius * 25.4; //convert inch to mm

 eeAddress = 8;

 EEPROM.put(eeAddress,radius);

 Serial.println(F("Cylinder Thickness (in): TT.T"));

 while (Serial.available() == 0); //Waiting for user input

184

 {

 }

 thickness = Serial.parseFloat(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 Serial.print(F("Cylinder Thickness is: "));

 Serial.println(thickness);

 thickness = thickness * 25.4; //convert inch to mm

 eeAddress = 12;

 EEPROM.put(eeAddress,thickness);

 Serial.println(F("Cylinder Height (in): HH.H"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 height = Serial.parseFloat(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 Serial.print(F("Cylinder Height is: "));

 Serial.println(height);

 height = height * 25.4; //convert inch to mm

 eeAddress = 16;

 EEPROM.put(eeAddress,height);

 break;

 }

 else

185

 {

 Serial.println(F("Measurement Units are not set"));

 goto bailoutB;

 }

 }

 case 4:

 {

 // Display Refresh Rate

 bailoutC:

 Serial.println(F("Display Refresh Rate:"));

 Serial.println(F("1. Continues"));

 Serial.println(F("2. Single"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Display = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 //Verifies user input is a valid menu option.

 //If it is, the variable is set.

 //If the menu option is invalid error message is sent to serial terminal and submenu is

redisplayed.

 if (Display >= 1 && Display <= 2)

 {

186

 Serial.print(F("Display Refresh Rate Set To: "));

 Serial.println(Display);

 eeAddress = 20;

 EEPROM.put(eeAddress,Display);

 break;

 }

 else

 {

 Serial.println(F("Error setting must be 1 or 2"));

 Display = 0;

 goto bailoutC;

 }

 }

 case 5:

 {

 // Measurement Interval

 bailoutD:

 Serial.println(F("Measurement Interval:"));

 Serial.println(F("1. 60s"));

 Serial.println(F("2. 15min"));

 Serial.println(F("3. 30min"));

 Serial.println(F("4. 1hr"));

 Serial.println(F("5. 3hrs"));

187

 Serial.println(F("6. 6hrs"));

 Serial.println(F("7. 12hrs"));

 Serial.println(F("8. 24hrs"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Interval = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 //Verifies user input is a valid menu option.

 //If it is, the variable is set.

 //If the menu option is invalid error message is sent to serial terminal and submenu is

redisplayed.

 if (Interval >= 1 && Interval <= 8)

 {

 Serial.print(F("Measurement Interval Set To: "));

 Serial.println(Interval);

 eeAddress = 24;

 EEPROM.put(eeAddress,Interval);

 break;

 }

 else

 {

 Serial.println(F("Error setting must be 1 thru 8"));

188

 Interval = 0;

 goto bailoutD;

 }

 }

 case 6:

 {

 // Data Recording

 bailoutE:

 Serial.println(F("Data Recording:"));

 Serial.println(F("1. Off"));

 Serial.println(F("2. On"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Recording = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 //Verifies user input is a valid menu option.

 //If it is, variable is set.

 //If the menu option is invalid error message is sent to serial terminal and submenu is

redisplayed.

 if (Recording >= 1 && Recording <= 2)

 {

 Serial.print(F("Data Recording Is: "));

189

 Serial.println(Recording);

 eeAddress = 28;

 EEPROM.put(eeAddress, Recording);

 break;

 }

 else

 {

 Serial.println(F("Error setting must be 1 or 2"));

 Recording = 0;

 goto bailoutE;

 }

 }

 case 7:

 {

 // Set Date

 bailoutF:

 Serial.println(F("Enter Year: yyyy"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Year = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 eeAddress = 32;

190

 EEPROM.put(eeAddress, Year);

 delay(10);

 Serial.println(F("Enter Month: mm"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Month = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 eeAddress = 34;

 EEPROM.put(eeAddress, Month);

 Serial.println(F("Enter Day: dd"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Day = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 eeAddress = 36;

 EEPROM.put(eeAddress, Day);

 bailoutG:

 Serial.print(F("You entered: "));

 Serial.print(Year);

 Serial.print(F(" : "));

 Serial.print(Month);

191

 Serial.print(F(" : "));

 Serial.println(Day);

 Serial.println(F("Is that correct? Yes(1) No(2)"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 int answer = Serial.parseInt(SKIP_WHITESPACE,'\r'); //Reading user input

from serial stream

 if (answer == 1)

 {

 break;

 }

 else if (answer == 2)

 {

 goto bailoutF;

 }

 else

 {

 Serial.println(F("Error entry must be 1 or 2"));

 answer = 0;

 goto bailoutG;

 }

 }

192

 case 8:

 {

 // Set Time

 Serial.println(F("Enter Time (24hr): hhmmss"));

 while (Serial.available() == 0); //Waiting for user input

 {

 }

 Time = Serial.parseFloat(SKIP_WHITESPACE,'\r'); //Reading user input from

serial stream

 Serial.print(F("Time Set To: "));

 Serial.println(Time);

 eeAddress = 38;

 EEPROM.put(eeAddress, Time);

 break;

 }

 default:

 {

 Serial.println(F("Please choose a valid selection"));

 break;

 }

 }

}

float getdistance()

193

{

 float distance = 0; //Variable to hold distance measurement data

 distanceSensor.startRanging(); //Write configuration bytes to initiate measurement

 for (int i=0; i < 1000; i++) //Loop to take 10 measurements to get the average

measurement

 {

 while (!distanceSensor.checkForDataReady()) //Checks if a measurement is ready

 {

 delay(1);

 }

 distance = distance + distanceSensor.getDistance(); //Get the result of the measurement

in mm from the sensor

 //Serial.println(distanceSensor.getSignalPerSpad());

 }

 distanceSensor.clearInterrupt(); //Clears interrupt caused by the .getDistance command.

 distanceSensor.stopRanging(); //Stop taking measurements

 Serial.print(F("SUM (mm): "));

 Serial.print(distance);

 distance = distance/1000; //Calculate the average

 Serial.print(F(" AVG (mm): "));

 Serial.print(distance);

 return distance;

}

194

float getvolume(float distance, float radius, float thickness, float height)

{

 //calculate volume in mm

 float volume = 3.14 * (sq(radius - thickness)) * (height - distance); //mm^3

 Serial.print(F(" Volume (mm3): "));

 Serial.print(volume);

 //Water

 return volume;

}

float gettemp()

{

 int val = analogRead(tempPin); //Get temperature from TI sensor

 float mv = (val/1023.0)*5000; //Convert raw ADC data to voltage value

 float cel = mv/10; //Convert voltage to degree Celsius

 Serial.print(F(" Temperature (C): "));

 Serial.println(cel);

 return cel;

}

float getmass(float vol)

{

 switch (Agent)

 {

 case 1: //FM-200

195

 {

 vol = (vol / 1000000000); //Convert mm^3 to m^3

 Serial.print(F(" Volume (m^3): "));

 Serial.print(vol,5);

 //FM-200 agent density (kg/m^3) values based on temperature (C)

 const int numValues = 21;

 double xValues[24] = { 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,

 85, 90, 95, 100}; // Temperature values

 double yValues[24] = { 1486.0, 1467.3, 1448.2, 1428.6, 1408.4, 1387.7, 1366.2,

1344.0, 1320.9, 1296.7, 1271.4, 1244.8, 1216.5, 1186.2, 1153.6, 1117.9, 1078.2,

 1032.8, 978.6, 907.8, 786.8}; //Density values

 double density = Interpolation::Linear(xValues, yValues, numValues, temperature,

true); //prints agent density

 Serial.print(F(" Density (kg/m^3): "));

 Serial.print(density);

 //calculate mass of agent

 float mass = density * vol;

 Serial.print(F(" Mass (kg): "));

 Serial.println(mass,2);

 if (oldMass == 0) //saves first mass calculation to variable oldMass

 {

 oldMass = mass;

 }

196

 return mass;

 }

 case 2: //Novec 1230

 {

 vol = (vol / 1000000000); //Convert mm^3 to m^3

 Serial.print(F(" Volume (m^3): "));

 Serial.print(vol,2);

 //Novec 1230 agent density (kg/m^3) 10% concentration values based on temperature

(C)

 const int numValues = 21;

 double xValues[24] = { 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,

 85, 90, 95, 100}; // Temperature values

 double yValues[24] = { 1.67, 1.64, 1.61, 1.58, 1.55, 1.52, 1.49, 1.46, 1.44, 1.41,

 1.39, 1.36, 1.34, 1.32, 1.30, 1.28, 1.26, 1.24, 1.22, 1.20, 1.18};

//Density values

 double density = Interpolation::Linear(xValues, yValues, numValues, temperature,

true); //prints agent density

 Serial.print(F(" Density (kg/m^3): "));

 Serial.print(density);

 //calculate mass of agent

 float mass = density * vol;

 Serial.print(F(" Mass (kg): "));

 Serial.println(mass,2);

197

 if (oldMass == 0) //saves first mass calculation to variable oldMass

 {

 oldMass = mass;

 }

 return mass;

 }

 case 3: //Water

 {

 //Variable to hold converted distance measurement (mm to cm)

 vol = (vol / 1000); //Convert mm^3 to cm^3

 Serial.print(F(" Volume (cm^3): "));

 Serial.print(vol,5);

 //Water density (g/cm^3) values based on temperature (C)

 const int numValues = 15;

 double xValues[15] = { 0.00, 4.00, 4.40, 10.00, 15.60, 21.00, 26.70, 32.20, 37.80,

48.90, 60.00, 71.10, 82.20, 93.30, 100.00}; // Temperature values

 double yValues[15] = { 0.99987, 1.00, 0.99999, 0.99975, 0.99907, 0.99802, 0.99669,

0.9951, 0.99318, 0.9887, 0.98338, 0.97729,

 0.97056, 0.96333, 0.95865}; //Density values (g/cm^3)

 double density = Interpolation::Linear(xValues, yValues, numValues, temperature,

true); //prints agent density

 //Serial.print(" Density (g/mm^3): ");

 Serial.print(F(" Density (g/cm^3): "));

198

 Serial.print(density);

 //calculate mass of agent

 float mass = density * vol;

 mass = (mass / 1000); //Convert g to kg

 Serial.print(F(" Mass (kg): "));

 //Serial.print(F(" Mass (g): "));

 Serial.println(mass,2);

 if (oldMass == 0) //saves first mass calculation to variable oldMass

 {

 oldMass = mass;

 }

 return mass;

 }

 }

}

void displayRefresh()

{

 switch (Display)

 {

 case 1:

 {

 displayData();

 return;

199

 }

 case 2:

 {

 attachInterrupt(digitalPinToInterrupt(interruptPin), wakeUp, LOW);

 lcd.clear();

 lcd.setBacklight(BacklightOFF);

 return;

 }

 case 3:

 {

 lcd.clear();

 lcd.setBacklight(WHITE);

 displayData();

 Display = 2;

 delay(2000);

 return;

 }

 }

}

void displayData()

{

 switch (Units)

 {

200

 case 1: //Display temperature and mass data in SI units on LCD

 {

 //print ambient temp

 lcd.setCursor(0, 0); //Set display cursor

 lcd.print("TEMP (C): ");

 lcd.print(temperature,1);

 //print agent mass/weight

 lcd.setCursor(0, 1); //Set display cursor

 lcd.print("Mass (kg): ");

 //lcd.print("Mass (g): ");

 lcd.print(mass,2);

 return;

 }

 case 2: //Display temperature and mass data in US Imperaial units on LCD

 {

 temperature = (temperature * 1.8) + 32; //convert C to F

 mass = (mass * 2.20462); //convert kg to lbs

 //print ambient temp

 lcd.setCursor(0, 0); //Set display cursor

 lcd.print("TEMP (F): ");

 lcd.print(temperature,1);

 //print agent mass/weight

 lcd.setCursor(0, 1); //Set display cursor

201

 lcd.print("Mass (lbs): ");

 //lcd.print("Mass (g): ");

 lcd.print(mass,2);

 return;

 }

 }

}

void wakeUp()

{

 Display = 3;

 detachInterrupt(digitalPinToInterrupt(interruptPin));

}

void dataRecording()

{

 switch(Recording)

 {

 case 1: //Data recording off

 {

 return;

 }

 case 2: //Data recording on

 {

 int frequency = 1; // in hz

202

 //Interrupt Service Routine and timer setup

 noInterrupts();// kill interrupts until everybody is set up

 //We use Timer 1 b/c it's the only 16 bit timer

 TCCR1A = B00000000;//Register A all 0's since we're not toggling any pins

 // TCCR1B clock prescalers

 // 0 0 1 clkI/O /1 (No prescaling)

 // 0 1 0 clkI/O /8 (From prescaler)

 // 0 1 1 clkI/O /64 (From prescaler)

 // 1 0 0 clkI/O /256 (From prescaler)

 // 1 0 1 clkI/O /1024 (From prescaler)

 TCCR1B = B00001100;//bit 3 set for CTC mode, will call interrupt on counter match,

bit 2 set to divide clock by 256, so 16MHz/256=62.5KHz

 TIMSK1 = B00000010;//bit 1 set to call the interrupt on an OCR1A match

 OCR1A = (unsigned long)((62500UL / frequency) - 1UL);//our clock runs at

62.5kHz, which is 1/62.5kHz = 16us

 recordingRate();

 interrupts();//restart interrupts

 Serial.println(F("Recording Settings On"));

 return;

 }

 }

}

void recordingRate()

203

{

 switch(Interval)

 {

 case 1: //recording rate equals 60s

 {

 sampleRate = 60;

 return;

 }

 case 2: //recording rate equals 900s (15min)

 {

 sampleRate = 900;

 return;

 }

 case 3: //recording rate equals 1800s (30min)

 {

 sampleRate = 1800;

 return;

 }

 case 4: //recording rate equals 3600s (1hr)

 {

 sampleRate = 3600;

 return;

 }

204

 case 5: //recording rate equals 10,800s (3hr)

 {

 sampleRate = 10800;

 return;

 }

 case 6: //recording rate equals 21,600s (6hr)

 {

 sampleRate = 21600;

 return;

 }

 case 7: //recording rate equals 43,200s (12hr)

 {

 sampleRate = 43200;

 return;

 }

 case 8: //recording rate equals 86,400s (24hr)

 {

 sampleRate = 86400;

 return;

 }

 }

}

void recordData()

205

{

 switch (record)

 {

 case 1:

 {

 EEPROM.put(EEaddress, mass);

 Serial.println(F("Record Data to EEPROM"));

 oldmass = mass;

 record = 0;

 EEaddress = EEaddress + sizeof(oldmass);

 if (EEaddress == EEPROM.length())

 {

 EEaddress = 44;

 }

 return;

 }

 default:

 {

 return;

 }

 }

}

void checkLimits()

206

{

 float percentError = ((mass - oldMass)/(oldMass))*100;

 if (percentError >= 5 || percentError <= -5)

 {

 lcd.setBacklight(RED); //Set LCD backlight color

 Serial.println(F("ERROR Mass has change by more than 5%"));

 return;

 }

 else

 {

 return;

 }

}

ISR(TIMER1_COMPA_vect)

{ //Interrupt Service Routine, Timer/Counter1 Compare Match A

 seconds++;

 if(seconds >= sampleRate) //set to however many seconds you want

 {

 record = 1; //Tells program to load mass and temperature data to EEPROM

 seconds = 0; // after 'x' seconds

 }

}

207

Appendix L: LLI Firmware with User Interface Rev 8 Flowchart

208

209

210

