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Abstract 

The purpose of this paper is to report the results of a capstone project for the Milwaukee 

School of Engineering’s (MSOE) Master of Science in Engineering (MSE) program. The 

contents of this paper discuss the overall purpose of the project and its justification in its 

field of research. In addition, the relevant published literature and final project results are 

investigated in detail. The general purpose of this project was to perform an analysis of 

various kinds of plastic hole mounts in multiple mounting situations that mimic common 

scenarios found in real-world applications. These plastic mounts or fasteners are associated 

with numerous applications in larger product assemblies such as automobiles. In the project 

investigation, the fastener’s material, size, and moisture content were varied along with the 

size and geometry of the hole it was mounted in. These variables were tested in 

combination to measure the force required to mount the fastener (push-in force) and extract 

it (pull-out force) from the same hole. The collected data were then exported for statistical 

analysis within Minitab®. Applying a Multiway Analysis of Variance (ANOVA) general 

linear model approach, a residual analysis was conducted to determine if the data met the 

initial requirements for a Multiway ANOVA. A multitude of data outliers—the result in 

part of manufacturing defects—contributed to a dubious analytical result (i.e., extremely 

high push-in force values but negligible pull-out force values). All outliers were removed, 

and data were again tested for compliance with general linear model assumptions. 

Furthermore, Ryan-Joiner normality testing—with its powerful predictive ability in 

association with large data sets and long-tailed distributions—was employed and indicated 

normally distributed data. Regression models were then developed for push-in and pull-

out forces, and a Box-Cox transformation was applied to each model, resulting in adjusted 

R-square values of 84% and 67% for the push-in and pull-out models, respectively. This 

result indicates that the models account for most—but not all—the behavior of the forces. 

Recommendations are also offered to improve the accuracy of the models, including the 

use of automated testing equipment, further standardization and conditioning of all tested 

parts, and the use of enhanced part identification methods, along with the need to 

investigate part geometric deformation with respect to part resin, as well as statistical noise 

associated with manufacturing inconsistencies. The primary goal of this research is to 

inform current and future manufacturing and design of similar products in this area. This 

knowledge will help mitigate unexpected failure of these products as they are used in the 

field and reduce waste via the manufacturing process. 
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Introduction 

Consumer products within the realm of manufacturing require extremely precise 

and niche standard adherences. These standards are typically for final products to meet 

safety, environmental, or even health standards [1, 2]. As a result, rigorous testing is 

required to ensure that all components of an assembled product are up to specifications and 

meet the certification requirements before going into final production. Furthermore, 

individual plastic components and parts can be essential pieces of much larger product 

assemblies, such as cars, boats, planes, and military equipment. Therefore, the associated 

testing can be even more important when compared to other supplementary pieces of 

assembly. However, the material properties of plastics can vary widely based on their use 

case, geometry, and level of degradation [3, 4, 5, 6]. As a result, specific use case material 

properties are relatively unknown or hidden behind proprietary barriers of businesses, 

making general application in the public difficult. 

Additionally, due to this large variety, there are a multitude of different plastic 

grades used to fit the needs of individual applications. For example, components that will 

spend most of their lifetime outside should be made of an ultra-violet (UV) ray resistant 

polymer [7]. Extreme temperatures also require special resins, so that products last the 

lifetime of their larger assembled product [8, 9]. With this taken into consideration, recent 

research investigates how the base plastic will incorporate additives that may drastically 

alter the performance of the plastics [10]. 

A more common use case of plastic components is mounting brackets that are 

inserted into surfaces with pre-existing holes. These products are commonly used in the 

automotive, solar, original equipment manufacturers (OEM), electrical wholesale (EW) 
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and aeronautical industry to aid in the routing of wires and other electrical components 

throughout the assembly. Figure 1 shows what a typical part for this mounting application 

can look like. Unfortunately, cable management within the scope of a much larger project 

is often an afterthought for project planners. For this reason, it is imperative that a wide 

range of options are readily available to fit the project’s needs with minimal cost and 

customization. Within these products, there are a few common design types that define this 

area of application. The most popular type of mount is for standard round holes, but there 

are also mounts for oval-shaped holes and even products with different colors that are used 

for identification [1]. These mounts resemble a fir tree in appearance, and as such, they are 

referred to as “fir tree” mounts. 

 

Figure 1: Picture of a Typical Plastic Hole Mount for an Oval Shaped Hole [1]. 

Historically, these kinds of products were constructed out of metal stampings that 

were then bent to the appropriate shape and length [1]. While metal materials exhibit 

excellent mechanical strength and resilience, they are susceptible to corrosion and other 

forms of degradation depending on the use case. More specifically, applications where 

metal parts are exposed to weather or extreme temperatures have a reduced product 

lifespan. Because of this possibility, their plastic counterparts are becoming an increasingly 

attractive option to eliminate the chance of corrosion or product failure with the added 

benefit of reduced production costs. When compared side by side, plastic parts are typically 
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less expensive to produce, quicker to install, and lighter in weight [1, 11, 12]. This rapidly 

accelerating trend within the industry further highlights how important it is to quickly 

verify and test new parts for various compliances and material property standards. 

The purpose of this capstone project was to test a wide variety of these mounting 

solutions that vary by the diameter of the mounting hole, the shape of the mounting hole, 

and the type of plastic used for the mount. These parameters were paired with varying 

levels of moisture content within the component part that drastically alter performance in 

both push-in and pull-out scenarios [13, 14]. This testing was be used not only to verify 

industry material and safety standards, but mainly to identify common performance 

characteristics. For example, identifying plastic resins that minimize the push-in force 

while simultaneously maximizing pull-out force in all environments possesses great 

business value. A general linear model’s predictive power would drastically cut the amount 

of testing time required to bring a part into full production. A further benefit would be the 

reduced amount of waste from materials used in the testing process. All parts used in this 

project were tested for push-in and pull-out strength and then analyzed via Minitab® 

software for normality. After data testing and cleansing, Minitab® will be applied to create 

a general linear model that will then be cross-referenced to the recorded data for accuracy. 

Background 

HellermannTyton (HT) is no stranger to the world of polymers and engineering. 

The company was founded in the mid-1930s in Hamburg, Germany in the wake of a 

brilliant cable management solution [1]. There was a large need to preserve existing and 

new electrical cables from fraying near the ends and other connection points, so Paul 

Hellermann developed and patented a three-pronged rubber binding system to contain areas 
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prone to fraying [1]. He naturally expanded the business into the surrounding areas of 

market specialization in cable routing and management. As time progressed, the company 

thrived during World War Ⅱ and expanded business overseas into Canada in 1955. As 

electronics took off in the 1960s and 1970s, so did HellermannTyton business with an 

increasing number of office and manufacturing facilities being opened worldwide. Today, 

HT operates in 39 countries and specializes specifically in custom made plastic injection 

molded parts for identification and cable management solutions [1]. 

Despite HT’s global success over time, one constant in today’s rapid business 

market is an expressed need to accelerate the development process of new products to meet 

customer demands and keep up with the fast pace of the industry. Most of a part’s 

development time is spent on the testing of materials used for safety and environmental 

standards that are required by a customer and safety organizations [15]. A sizable number 

of specifications involve product performance in a wide variety of use cases, but more 

importantly, their resistance to degradation in those use cases over time. This is precisely 

why this project was selected. Developing a predictive performance model for even a single 

class of products at HT would greatly decrease the amount of testing and design time 

required. This would allow the company to remain competitive in the custom parts 

marketplace in terms of cost and product development time. 

Unfortunately, studies on large scale and general application information in this 

field are few and far between. Because of the dynamic and complex nature of polymer 

material behavior, specific use case models need to be developed on a case-by-case basis 

[16, 17, 18, 19, 20, 21]. Additionally, finite element analysis (FEA) of these systems is not 

reliable on such a scale [15]. Engineers struggle to find an acceptable model that adequately 
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represents the complex geometry of the cutting-edge parts HT sells. The development of 

an analytical model will serve as a strong starting point for HT’s engineering department 

for future testing and design considerations without randomly guessing how the product 

will perform or relying on often inaccurate computer-based models. 

Review of Literature 

The field of research regarding polymer fasteners has been rapidly evolving and 

receiving increased levels of attention since the mid-1970s. The increasing interest stems 

directly from the utilization of polymers in manufacturing settings as alternatives to 

historically metal-based components. Additionally, polymers are an excellent addition to 

many biomedical components as a strengthening mechanism that also reduces the weight 

and cost of critical medical devices [18, 22, 23, 24]. As the dependence on these polymers 

has increased, the desire to understand more complex and specific applications has risen 

concurrently. The content of this research can primarily be defined by the approaches used 

concerning viscoelasticity [6, 25, 26, 27]. According to John J. Aklonis of the University 

of Southern California and William J. MacKnight of the University of Massachusetts: 

“Viscoelasticity is a subject of great complexity fraught with conceptual difficulties” [6].  

Unfortunately, a common theme in these academic works is a failure to apply the 

advanced behaviors of viscoelasticity to more general use case scenarios. Researchers tend 

to focus on highly specific areas that may be useful for a narrow range of readers, but 

inevitably fail to meet a more general appeal. For example, there are studies that focus on 

viscoelasticity in medical situations, such as the modeling of artificial hinges in joints and 

muscular activation [18, 23, 24]. Logically, research has also been conducted on using 

polymers as additives to conventional construction materials to assist in long term strength 
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and rigidity in both medical and commercial applications [17, 21, 22, 28]. This research is 

not directly linked to the experimentation outlined in this paper, but it does highlight the 

necessity for exploration and modeling in this field. 

Thankfully, the state of research has not gone unnoticed. To bridge the gap in 

literature, there have been multiple attempts to compile books that explain these complex 

topics in layman’s terms to make it more accessible to the public [3, 6, 29].  

Much of the material is written in the context of manufacturing by experts in the 

industry [17, 30, 31]. As a result, most of the cutting-edge knowledge is locked behind 

proprietary barriers and other legal logistics, which results in the bulk of publicly available 

information coming from trial and error using these materials. However, even when the 

material is simply explained and tested via trial and error, the polymers are rarely tested in 

standalone application settings such as those outlined in this paper. 

Furthermore, another issue that has been pointed out in the research is the lack of 

predictive data models. Once again, sources will generally confirm widely known 

mechanical properties, but neglect to recommend or create a model for predicting the 

behavior of the polymers when multiple degradation or fatigue factors are being applied 

[17, 19, 20, 21, 25]. Proprietary attempts of finite element analysis (FEA) at HT have 

proven unfruitful thus far. This method of computer modeling may find utility for larger 

products and models, but for the small geometry present in most products manufactured by 

HT, computer models produce widely inaccurate results.  

Consequently, current future options for research are limited at this time. 

Researchers argue that truly accurate models must begin to focus on chemical and 

molecular interactions of individual plastics to be widely applicable and accurately 
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modeled [19]. However, mathematical models presented as a basis for this line of research 

fail to unify and relate the complex equations needed to be widely applicable and accurate 

[19, 20]. With that in mind, much of the research conducted in this capstone project was 

investigated in the absence of specific literature related to the proposed use case. Instead, 

a critical analysis of the generalized findings in the field was used to inform potential 

behavior of the generalized linear model.  

Methods 

This project started with the conditioning of the moisture content used in each of 

the parts that were to be tested throughout the course of the project. Conditioning in this 

scenario is the process of introducing a predetermined amount of moisture to each of the 

plastic parts to be tested. This is done by inserting the parts into a large humidity and 

temperature-controlled chamber, so moisture can gradually integrate with each of the parts. 

Typically, it takes around 18 hours for parts to be fully conditioned to the appropriate 

moisture level. For this experimentation, each batch of parts was conditioned for a total 

time of 24 hours at a temperature of 80 degrees Celsius. Because of limited size and time 

available to condition parts, the overall conditioning and testing process were done over 

the course of two weeks. Most importantly, each of the three levels of moisture content 

were done independently for all parts to minimize the time between conditioning and 

testing. This was done to reduce the possibility of the moisture content deviating from the 

conditioned level. Subsequently, all parts were conditioned to the lowest moisture content 

required, removed, and then tested. Next, a new batch of parts were conditioned to the mid-

tier moisture content, removed, and then tested. This process was repeated for the highest 

moisture content level. There was a total of six different parts that were tested over the 
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course of this project. For each humidity level, 90 of each part were conditioned so each of 

the three selected hole sizes could be tested with 30 samples.  Therefore, a total of 270 

pieces were required for each part in total for the duration of the experiment. Thus, the 

overall sample size for this experiment was 1,620. The selected moisture levels followed 

the range of normal operating conditions as specified by HT [15]. Figure 2 is a visual 

representation of the researched moisture content curve derived from other testing of the 

PA66 resin material. The tracked moisture content (𝑀𝑐) is described by Equation (1): 

𝑀𝑐 = −0.953617 + 1.02641 ∗  𝑒(0.02183∗𝑅𝐻) . (1) 

 Normal operational range for products applies when 𝑀𝑐 is between the values of 1 

and 3. Therefore, the three testing levels selected for this project were when 𝑀𝑐 was equal 

to one, two, and three. The values for 𝑀𝑐 were then inserted into Equation (1) and used to 

find the relative humidity (RH) values required to condition the parts in a humidity 

chambered supplied by HT on site. 

 

Figure 2: Typical Humidity versus Moisture Content Curve for PA66 Resin [15]. 
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For analysis, all the preliminary testing information was exported out of the testing 

software and into a comma-separated values (CSV) file in Microsoft Excel ®. Testing 

information consisted of all variations of the variables used in this experiment. The main 

differences in testing order and grouping were the humidity level, or moisture content, of 

the parts that were tested. This was due to the conditioning time and space necessary to 

achieve the desired level of moisture within each part. 

Once the data were exported from the testing software and grouped appropriately, 

they were then imported into Minitab® statistical software for preliminary analysis 

utilizing a Multiway Analysis of Variance (ANOVA) general linear modeling technique. 

Initial review of the data consisted of residual analysis to validate that the statistical model 

met the assumptions for the Multiway ANOVA. There are three primary assumptions when 

conducting a Multiway ANOVA test [32]. Firstly, the error terms for each factor level in 

the experiment must be normally distributed. A normally distributed set of data has an even 

distribution of data points both above and below the mean of the respective data. Secondly, 

the distributions of each level must not be biased by time order and be without major data 

anomalies or outliers. Finally, the residuals of the data must be independent from one 

another. For this project, the author exercised careful consideration in the sampling 

population to ensure no internal dependencies existed throughout the course of testing. 

Samples were selected at random from a large manufacturing run of the selected parts with 

no prejudice to the quality of individual parts. 

 Most notably, the normal probability plot was utilized to check the error terms for 

normality and to visually inspect the dataset for outliers. As seen in Figure 3, there were 

obvious outliers present that negatively impacted the data analysis and any final 
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conclusions made from the data. Some examples of outliers have been circled in red in 

Figure 3. 

 

Figure 3: Residual Plot for Pull-Out Force Before the Removal of Outliers. 

Thankfully, any potential outliers were noted in the testing software during data 

collection, which made them easy to identify in the source information. After investigation, 

it was learned that unsuccessful tests, and thus outliers, were caused by parts deflecting 

from the mounting hole when being pushed down. This occurrence was most frequent 

when the variables of moisture content and hole diameter were at their maximum and 

minimum, respectively. This event was further exacerbated when the variables were tested 

in tandem. A consequence of the deflections on the data was an extremely high value for 

push-in force required to apply the part, followed by no force required to extract the part. 

As a result, even if the deflection and ineffective test was not noted directly at the time of 

testing, the data itself could be used to easily identify any testing failures and outliers. 
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However, not all outliers in the data are because of this occurrence. The author suspects 

that defects in the manufacturing process in combination with a slight deviation in the angle 

the parts were applied to the whole may account for other outliers present in the data.  

In the plastic manufacturing industry, parts are mostly produced in mass via large 

metal molds commonly referred to as tools. Hundreds of parts can be produced 

simultaneously from these tools. However, parts that do not receive enough or receive too 

much plastic during the injection molding process may experience significant alterations 

in the product’s strength because of the thermal degradation to the plastic resin [15]. 

Furthermore, no testing apparatus is perfect in replicating a task repeatedly during 

experimentation. As it relates to this project, the author had to manually insert and remove 

parts before and after a test was conducted. Even though a robotic arm and mounting plate 

were used to administer the test, the resting angle of the part as it was inserted into the 

mounting hole may have deviated slightly due to the author’s application.  

Additionally, an entire part that was tested was removed from the final data model. 

This was done because the geometry of the part tested was not consistent with the others 

in the testing group. The shape of the branches on the fir tree were hollow in the center 

instead of solid when compared to the rest of tested parts. Figure 4 shows an example of 

the geometry inconsistency. Preliminary testing included this part solely as an extra 

variable to explore, but ultimately it negatively impacted the residual analysis so much, 

any potential for a linear model was negated. Therefore, it was removed from the 

information. 



18 

 

 

Figure 4: Fir Tree Mount with Non-Standard Geometry [1]. 

Once all outliers were identified, they were manually removed from the testing 

data. The data were rectified by simply removing the outlier row from the source data 

within Minitab® until no more noted outliers were present. 

Once the data were cleansed, it was then retested within Minitab® for the general 

linear model assumptions and the normality plot was visually compared to the uncleansed 

data. Figure 5 shows the results after the removal of the outliers from the initial testing 

data.  
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Figure 5: Residual Plot for Pull-Out Force After the Removal of Outliers. 

In addition to visual inspection, empirical methods were also used to test the data. 

The Anderson-Darling (AD) test was originally considered for normality testing but 

yielded hyper sensitive results when dealing with the large data sets seen in this project. 

Any residual deviation towards the tails of the data sets were over exaggerated causing 

empirical testing to suggest the data was non-normally distributed. With conflicting visual 

and empirical testing, the Ryan-Joiner (RJ) test was used instead of the AD test to good 

effect. The RJ test was used in this experiment because of its more powerful predictive 

ability when dealing with large sample sizes and long-tailed distributions of data [33]. 

Thus, the RJ test had a greater ability to accurately detect outliers in manufacturing-based 

data when compared to other normality tests. Specifically, the RJ test is more successful at 

monitoring data that produces large outliers from time to time in addition to data sets that 
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follow a non-normal distribution curve such as those seen in time-to-failure strength tests 

[34]. The RJ test is not appropriate to monitor data sets that may have an exponential or 

gradual shift in the distribution curve. In Figures 6 and 7 residual plots and RJ tests for the 

pull-out and push-in forces can be seen, respectively. Note that the RJ coefficient in both 

plots is near the value of 1, indicating the data are likely normally distributed [34, 35, 36].  

 

Figure 6: Ryan-Joiner Residual Plot for Pull-Out Force. 

 

Figure 7: Ryan-Joiner Residual Plot for Push-In Force. 
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Once satisfied with the initial data cleansing and testing for normality, the author 

created models for push-in and pull-out forces separately while including all variables that 

were tested. The models were created by utilizing the general linear model platform within 

Minitab®. To explore the data further, various combinations of variables were included 

and excluded from the models to reduce the amount of variance to the linear trend. This 

was identified by analyzing the Minitab® analysis of variance output for each model and 

its factors as seen in Table 1 and noting its “lack of fit” p and R-squared adjusted values 

indicated in Table 2. Firstly, the p-values for each of the models were used to determine if 

the model itself was statistically significant. If the p-value was less than an alpha value of 

0.05, the entire model, and or the individual factor, was statistically significant to the study. 

Furthermore, the adjusted R-squared value was considered for each model. The adjusted 

R-squared value reflects how much of the variation in the data is accounted for in the 

model. In other words, it indicates enough factors have been considered to describe how 

much, and how well, the system that is being studied is modeled. Conversely, for the lack 

of fit tests, a p-value above the alpha value of 0.05 indicated the model follows a linear fit.  

At first, all the variables were included in the general linear model and analysis of 

various testing. Next, the adjusted R-squared value was noted to track how well the 

combination of variables described the system. Furthermore, each variable's respective p-

values were noted for how much significance, or effect, it had on the model’s behavior. 

Any variables that had a p-value greater than 0.05 were then removed from the model one 

by one and in combination and retested. The model was then rerun to find the new adjusted 

R-squared value. This process was repeated for all combinations of variables with the goal 

of maximizing the adjusted R-squared value. 
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Additionally, a Box-Cox transformation was applied to the data to account for some 

of the curvature present in the data and the residuals were not found to be non-normally 

distributed. This curvature can be seen visually in Figures 6 and 7 towards the “tails” of 

the data set. The gradual sloping towards the ends of the data sets can be fit to a linear 

model using this transformation technique with the data set being assigned a corresponding 

transformation value of λ. A λ value of 1 is the standard for a perfectly linear set of data, 

while assigned values of λ that are less than 1 indicate that the data set is concave or 

downward facing. Conversely, values greater than 1 indicate a convex or upward facing 

set of data [ 36, 37]. 

Results 

The goal of this project was to form conclusions based on all the tested variables to 

provide the most comprehensive and widely applicable data to HT’s engineering and 

product development departments. Initial analysis of the data after testing, both tabular and 

visual, indicated that there were a significant number of outliers present in the data that 

were affecting overall model performance. As a result, the outliers were manually removed 

from the data and push-in and pull-out models were retested for accuracy. Nearly all 

variables saw an increase in their individual p-values post outlier removal. Additionally, 

both models saw improvements to their adjusted R-squared values that indicated more 

comprehensive and explanatory models for this system. In a pursuit to maximize each 

model’s adjusted R-squared value, variables were omitted from the data model and retested 

following a similar process. Variables were excluded and included for testing based on 

their individual p-values during analysis. Fortunately, no tested combination of variables 

yielded a higher adjusted R-squared value than all variables tested simultaneously. 
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To further maximize the adjusted R-squared value, a Box-Cox transformation was 

applied to each data model to account for some nonlinearity seen towards the tails of each 

data set. The λ values for push-in and pull-out models were .377196 and .367873, 

respectively, with full detail available in Tables 1 and 2. 

Table 1: Box-Cox Transformation Details for Push-In Model. 

Factor coding (-1, 0, +1) 

Rows unused 30 

    

Box-Cox transformation   

Rounded λ 0.377196 

Estimated λ 0.377196 

95% CI for λ (0.324696, 0.429696) 

 

Table 2: Box-Cox Transformation Details for Pull-Out Model. 

Factor coding (-1, 0, +1) 

Rows unused 30 

    

Box-Cox transformation   

Rounded λ 0.367873 

Estimated λ 0.367873 

95% CI for λ (0.243373, 0.493373) 

 

Expanding on the details in Tables 1 and 2, two model runs were conducted for the 

analysis of this project. One run was conducted on the push-in force required to apply the 

part to the selected mounting hole. The second run was created on the pull-out force 

required to extract that same part from the chosen mounting configuration. The difference 

in force required is rather substantial for nearly all the configurations used across testing. 

Typically, the required push-in and pull-out force required for a single test averaged around 

8.4 newtons and 68.8 newtons, respectively. Tables 4 through 6 show the model summaries 

and analysis of variance for both push-in and pull-out models after the Box-Cox 

transformation was performed. Specifically, Tables 3 and 4 highlight the push-in force and 

Tables 5 and 6 indicate the pull-out force. Preliminary model summaries and analysis of 



24 

 

variance for both the push-in and pull-out forces are available in Appendix A. These 

preliminary models do not include a Box-Cox transformation on the foundational dataset.  

Table 3: Analysis of Variance for Push-In Force Model. 

Source DF Adj SS Adj MS F-Value P-Value 

Material 2 0.112 0.0560 0.94 0.391 

Hole Geometry 1 80.939 80.9390 1358.14 0.000 

Hole Size (mm) 4 193.080 48.2699 809.96 0.000 

RH (%RH) 2 17.044 8.5219 143.00 0.000 

Error 1240 73.898 0.0596   

Lack-of-Fit 17 18.887 1.1110 24.70 0.000 

Pure Error 1223 55.011 0.0450   

Total 1249 487.932    

 

Table 4: Model Summary for Push-In Force Model. 

S R-sq R-sq(adj) R-sq(pred) 

0.244121 84.85% 84.74% 84.65% 

 

Table 5: Analysis of Variance for Pull-Out Force Model. 

Source DF Adj SS Adj MS F-Value P-Value 

  Material 2 7.614 3.8069 23.39 0.000 

  Hole Geometry 1 58.017 58.0167 356.45 0.000 

  Hole Size (mm) 4 356.821 89.2051 548.08 0.000 

  RH (%RH) 2 17.903 8.9516 55.00 0.000 

Error 1240 201.823 0.1628     

  Lack-of-Fit 17 22.696 1.3351 9.12 0.000 

  Pure Error 1223 179.127 0.1465     

Total 1249 616.225       

 

Table 6: Model Summary for Pull-Out Force Model. 

S R-sq R-sq(adj) R-sq(pred) 

0.403436 67.25% 67.01% 66.84% 

 

As seen in Tables 3 through 6, the results of product testing were reasonable for 

both push-in and pull-out forces. Most notably, moderately high values of the adjusted R-
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squared value indicated that they captured a significant portion of the system behavior with 

the variables tested in this model. However, as seen in Table 3, an adjusted R-squared value 

of around 67% leaves room for future improvement, meaning that other factors could be 

added to a future analysis. For the purposes of this project, an acceptable percentage would 

be around 80%. This value would indicate that about 20% of the model’s behavior is not 

captured by the variables the author has chosen to test. 

Upon consideration, the author suspects that adjusted R-squared values that did 

meet the given criteria would be the result of defects in manufacturing or inaccuracies 

through the testing process. It is difficult to adjust for manufacturing defects; however, a 

suggested future improvement for experimentation would be tracking the location of each 

part in the injection mold by labeling the mold cavities each part comes from. Thankfully, 

this tracking technology and process already exist and is utilized by HT on a day-to-day 

basis. Therefore, it will be a relatively simple enhancement to enact in the future. In 

addition, the mold number itself could be assigned to each batch of produced parts. Because 

of the sheer volume of parts that HT produces annually, the company requires multiples of 

the same tool to meet demand. No tool is an exact copy of another, which therefore 

introduces some level of uncertainty concerning how well each part is replicated across 

multiples of each tool. Ideally, testing would be done on batches of parts coming from only 

one tool, one section, and one production run of any part. 

Finally, the regression equations were also inspected as part of the analysis done 

within this project. Overall, both models behaved intuitively when examining geometric 

variables. When considering the mounting hole’s shape, slotted holes required less force 

to apply and extract a part, even though there was physically more of the part in contact 
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with the surface. In addition, smaller holes required more force to insert and remove parts, 

due to increased overlap from the “limbs” of each fir tree mount. When examining the three 

humidity levels used in this experimentation, higher levels of humidity produced a softer 

feeling product that in turn was also easier to apply and remove. 

Conversely, the three kinds of material resins used in this experimentation required 

a deeper investigation. The three resins tested consisted of a standard PA46 resin, a heat 

stabilized PA66HS resin, and a high impact modified, heat and UV stabilized 

PA66HIRHSUV resin. The PA66HS and PA66HIRHSUV were consistent across both 

models in their behavior. The PA66HS required more force to apply and extract from each 

hole when compared to the other two resins. In opposition, the PA66HIRHSUV required 

significantly less force in both categories when compared to the other two resins. However, 

the PA46 behaved somewhat differently between the two models. For the push-in force, it 

tended to perform between the range of its competitors, but the pull-out force required a 

notably larger amount of force when compared to the others. The author suspects that this 

increase in extraction force is due to some geometric deformation during the application 

process. Future exploration in this area of research should focus on this lower quality resin 

with special consideration taken to document if and how the plastic deforms at each stage 

of testing. The exact regression equations from this experimentation can be found in 

Appendix B. 

Conclusions and Recommendations 

The goal of this project and experimentation was to associate the testing variables 

with both the push-in and pull-out force required to successfully apply the product to a hole 

mount. The testing methods and combinations of specific variables introduced a notable 
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amount of complexity to standard testing. Slight deviations in application angle of the parts 

and some testing failures were unexpected when originally conducting testing and resulted 

in a significant increase in the total time and parts required to collect data. As a result, this 

introduced outliers into the data and decreased sample size for select testing groups when 

removed for modeling. For future testing, it is recommended to consider the combination 

of mounting hole size and the relative humidity of each part. More specifically, when the 

mounting hole is at the minimum diameter of a part’s specified application range and the 

relative humidity level is high, special care and attention should be devoted to the testing 

in this range. In addition, the implementation of automated testing apparatuses has already 

begun in this area, which will reduce the total amount of time to test parts in addition to 

ensuring they have minimal testing failures in critical variable ranges as outlined above. 

Moreover, increasing the sampling rate of the automated testing equipment to 4 millimeters 

per second from 1 millimeter per second will further reduce the total testing time while 

reducing sampling noise as reported by HT employees. 

Just as in reducing the amount of time while testing is underway, the author would 

also like to guarantee that the total time for conditioning, transfer, travel, and testing of 

each part is consistent across all moisture content variables. At the time of testing, space 

was extremely limited at HT due to market demand for other products and services that 

required the use of the conditioning chambers. As such, part conditioning times were 

inconsistent and extremely limited. By blocking out uniform set times ahead of testing, 

each moisture content variable will remain as close as possible to the predetermined value 

for each level. 
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Furthermore, future research is recommended on the PA46 resin within this area of 

manufacturing and application. Specific attention and effort should be given to the 

geometry of each part during the application process. As discussed earlier, it is suspected 

that significant geometric deformation played a role in some of the deviation seen in both 

push-in and pull-out forces. 

The utilization of enhanced identification methods will also be essential to 

progressing this experimentation. Some examples of production identification parameters 

are mold and cavitation number, percentage of regrind resin used in production, and 

moisture content during creation. Likewise, the exact production location of each tested 

part should be imprinted on the side of the part to easily identify its production origin. A 

batch of randomly sampled parts could potentially come from multiple different production 

molds and mold quadrants that can perform differently during the manufacturing process. 

Deviations in the manufacturing process will significantly affect a part’s mechanical 

performance, thus also affecting statistical analysis and modeling. As a result, efforts to 

track a part’s physical properties from production to testing will be imperative to future 

enhancements. 

The use of a Box-Cox transformation was essential to boosting the adjusted R-

squared value of both data models presented in this paper and thus ensuring the model 

accommodated for as much of the response variables as possible. Additionally, the sample 

size used in this experiment is rather large, which led to hypersensitivity of the performance 

parameters. Therefore, the use of a Ryan-Joiner test instead of an Anderson-Darling was 

used to test for normality and ultimately concluded that the data was normally distributed 

despite a large sample size.  
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Additionally, the introduction of statistical noise should be further investigated with 

the research team and sponsoring company. Further discussion on this variance may 

explain any remaining adjusted R-squared percentage not obtained in the data models. 

Industry knowledge suggests that manufacturing inconsistencies may account for a large 

portion of any lost R-squared percentage. For instance, changes in the mixture of new and 

regrind resin along with the temperature of the screw and tool all can have a significant 

impact on the end performance of a given part. This noise should be tracked via tool, 

machine, and cavity identification methods already in place at HT. 

Overall, adjusted R-squared values of 67% and 84% for push-in and pull-out 

models indicate this research may serve as a useful starting point for future statistical 

analysis and modeling in this area.  
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Appendix A: Initial Model Summaries without Outlier Removal or Box-

Cox Transformations 

Table A-1: Initial Analysis of Variance for Push-In Force Without Outlier Removal or Box-Cox 

Transformation. 

Source DF Adj SS Adj MS F-Value P-Value 

  Hole Size (mm) 4 37048 9262.04 186.45 0.000 

  Material 2 69 34.40 0.69 0.500 

  RH (%RH) 2 2867 1433.50 28.86 0.000 

  Hole Geometry 1 6073 6073.50 122.26 0.000 

Error 1257 62443 49.68     

  Lack-of-Fit 17 3323 195.45 4.10 0.000 

  Pure Error 1240 59121 47.68     

Total 1266 120863       

 

Table A-1: Initial Model Summary for Push-In Force Without Outlier Removal or Box-Cox 

Transformation. 

S R-sq R-sq(adj) R-sq(pred) 

7.57509 51.34% 51.01% 50.56% 

 

Table A-2: Initial Analysis of Variance for Pull-Out Force Without Outlier Removal or Box-Cox 

Transformation. 

Source DF Adj SS Adj MS F-Value P-Value 

  Hole Size (mm) 4 277662 69415.4 174.10 0.000 

  Material 2 972 485.8 1.22 0.296 

  RH (%RH) 2 19347 9673.4 24.26 0.000 

  Hole Geometry 1 23599 23598.9 59.19 0.000 

Error 1318 525498 398.7     

  Lack-of-Fit 4 25503 6375.7 16.76 0.000 

  Pure Error 1314 499995 380.5     

Total 1327 1037985       

 

Table A-3: Initial Model Summary for Pull-Out Force Without Outlier Removal or Box-Cox 

Transformation. 

S R-sq R-sq(adj) R-sq(pred) 

19.9677 49.37% 49.03% 48.67% 

 

  



35 

 

Appendix B: Full Regression Equations for Push-In and Pull-Out 

Models 

Push-In Model Exact Regression Equation 

Push In Force 

(lbf)^0.377196 

= 2.26107 - 0.0087 Material_PA46 

- 0.01128 Material_PA66HIRHS 

+ 0.0200 Material_PA66HS + 0.5643 Hole Geometry_Round 

- 0.5643 Hole Geometry_Slot + 0.5414 Hole Size (mm)_6.1 

+ 0.4165 Hole Size (mm)_6.2 - 0.4481 Hole Size (mm)_6.5 

- 0.7550 Hole Size (mm)_6.9 + 0.2453 Hole Size (mm)_7.0 

+ 0.2140 RH (%RH)_29.4831 + 0.0147 RH (%RH)_48.4179 

- 0.2287 RH (%RH)_61.7757 (B-1) 

 

Pull-Out Model Exact Regression Equation 

Pull Out Force 

(lbf)^0.367873 

= 4.7068 + 0.0711 Material_PA46 

- 0.1055 Material_PA66HIRHS 

+ 0.0343 Material_PA66HS + 0.4778 Hole Geometry_Round 

- 0.4778 Hole Geometry_Slot - 0.0068 Hole Size (mm)_6.1 

+ 1.2195 Hole Size (mm)_6.2 - 0.0630 Hole Size (mm)_6.5 

- 1.5581 Hole Size (mm)_6.9 + 0.4083 Hole Size (mm)_7.0 

+ 0.2338 RH (%RH)_29.4831 - 0.1618 RH (%RH)_48.4179 

- 0.0720 RH (%RH)_61.7757 (B-2) 
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