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Abstract 

Immersive perfusion simulation is becoming more prevalent in perfusion 

education and training. This is best thought to be achieved through high fidelity 

simulations that mimic as much of the operating room environment as possible. Thus, 

this type of simulation would include all equipment, both application and monitoring. 

MSOE currently has an in-house developed hemodynamic perfusion simulator. It allows 

students to practice tasks such as initiating bypass, maintaining arterial pressure, and 

weaning from bypass. Currently this simulator is not paired with blood gas monitoring 

equipment. The goal of this project was to add blood gas monitoring capabilities to the 

simulator. 

The blood gas monitor simulator was developed by modeling the physiologic 

systems that interact with blood gas monitors and creating an interactive program that 

would display the values achieved with normal blood gas analysis. The physiologic 

models were represented by a set of equations that were entered into MATLAB® as a 

function within a programed graphical user interface (GUI). When the code initiated the 

function, all relevant values were collected from the interactive control and used in the 

calculations to determine dependent blood gas values. All values were then displayed. 

Testing of the system through trial runs specific to the programmed models found 

that the virtual simulation would accurately represent the normal physiologic responses to 

changes in blood gas values, as well as the effects of cardiopulmonary bypass on those 

mechanisms. The addition of the simulated continuous blood gas monitor has created a 

more immersive simulation that allows students to practice assessing blood gas values 

and improve situational awareness that is necessary when these values change.  
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1.0 Introduction 

Simulation technology has become a staple in the medical field. Creating 

situational scenarios for healthcare providers can help reduce iatrogenic risk to patients 

and reinforce understanding of medical equipment. Increased understanding has led to 

more specialized simulation modules that are profession and task based. 

Cardiopulmonary bypass simulators have become a popular method of teaching 

perfusion by combining artificial hemodynamic systems and physiological models to 

create an immersive learning experience [1].  They provide risk free, reproducible 

environments for hands-on learning and evaluation. Physiological modeling software 

used in perfusion simulators such as Orpheus have allowed for customizable case 

simulations [1]. These scenarios are also useful for practicing perfusionists to simulate 

unique or catastrophic events they may not experience in their practice. 

The perfusion simulator at the Milwaukee School of Engineering (MSOE) was 

designed and implemented by Jonathan Howard [2].  Howard’s design was a mock loop 

comprised of mechanical components that provided an analogous representation of the 

arterial and venous systems.  Later, Caleb Varner added the representation of the 

pulmonary system and variable venous compliance [3]. The current simulator allows 

students to practice initiating and weaning from CPB in variable scenarios while 

monitoring simulated patient pressures. However, there is more to perfusion than just 

hemodynamics and initiating or weaning from CPB.  

The current simulator does not provide patient scenarios while on bypass or 

assessing the adequacy of perfusion. An addition of simulated monitoring systems such 

as a continuous inline blood gas monitor (CBGM) would add a new dimension to the 
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simulator. Monitoring and troubleshooting blood gas values would provide students with 

a more realistic operating environment and help in developing situational awareness. 

The goal of this project was to design and program a graphical user interface 

(GUI) application to simulate a CBGM.  This included two GUI components and 

multiple functions built into the programs code. The program would collect data from an 

interactive user interface, then use them to calculate and model physiologic conditions 

representative of the cardiac patient population displayed through blood gas values. All 

pertinent values would be displayed on the second GUI that acted as a simulation monitor 

to the student. The simulator would allow students to practice assessment on blood gas 

parameters while on pump and in a controlled environment. A CBGM displays several 

pertinent values that help to assess the adequacy of perfusion during a case. The 

application would be displayed in a similar manner to CBGM used clinically and would 

allow an instructor to alter the parameters. 
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2.0 Background 

Cardiopulmonary bypass is a medical technique required in a multitude of 

cardiovascular surgeries. It is the use of a physiologically analogous mechanical circuit to 

replicate the function of the heart and lungs of the patient. The basic procedural setup 

consists of venous cannulas placed in the superior vena cava (SVC) and inferior vena 

cava (IVC) that are attached to an extracorporeal circuit’s venous line, which drains 

deoxygenated blood into a filtered reservoir. From the reservoir, a mechanical pump, the 

“heart”, is used to move the blood through tubing to the oxygenator, the “lung”. As blood 

travels through the artificial lung, the blood is oxygenated and carbon dioxide is removed 

via diffusion. Some current oxygenator models have a built-in heat exchanger and arterial 

filter to maintain desired temperature and filter blood before its return to the patient. The 

oxygenated blood is returned to the patient through the arterial line to arterial cannula 

placed in the aorta. This procedure effectively circumvents the native heart and lungs 

(Figure 1).  
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Figure 1: Standard Cardiopulmonary Bypass Pump Schematic [4]. 

 

In addition to simulating the function of heart and lungs, the CPB circuit includes 

multiple occlusive pumps, a cardioplegia delivery system, and ancillary monitoring 

equipment. The occlusive pumps are used as a means to pull shed blood from the surgical 

field to a cardiotomy. The cardiotomy, often built into the venous reservoir, is used to 

filter out gross emboli and salvage blood.  The cardioplegia system is used to deliver 

pharmacological agents to protect myocardium and establish quiescence of the heart 

during surgery. Some of the monitoring equipment used with CPB include pressure, 

blood gas, and electrocardiogram (EKG). The information provided can be used to assess 

hemodynamics, electrical activity and homeostatic mechanisms. In order to simulate CPB 
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realistically, a multifaceted model must be created to account for the multiple aspects 

described. 

 

2.1 Use of Simulation Technology in Perfusion Education 

There is a long history of medical simulation which predates perfusion as a 

profession. Simulations have been used as educational implements for understanding 

physiologic systems, predict potential outcomes, and to learn/practice technical abilities 

[5]. Simulation technology has become increasingly profession-specific as knowledge 

expands and equipment changes. Perfusion is still a relatively new profession that has 

evolved drastically in the past 50 years. Increased understanding has led to development 

of CPB-specific simulations as a tool for this growing profession.  

There are multiple types of CPB simulators available, including virtual and high 

fidelity. Virtual simulators are solely computer-based programs that run interactive 

scenarios where a user provides feedback with a computer interface. High fidelity 

simulators such as the Orpheus, created by Ulco Technologies, combine programmed 

physiological models with mechanical systems in an operating theater to create more 

realistic operating room experiences (Figure 2) [1, 6]. Simulated cases can be run with a 

normal CPB setup as the interface which reinforces physical perfusion techniques [1]. 

The reproducibility of the scenarios also provides a more standard way to evaluate 

students’ performance and promote safe practices [5, 6]. These attributes make simulators 

a desirable method for teaching and mastering procedural skills before students enter the 

operating room.  
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Figure 2: Simulation Facility with Orpheus System [6]. 

 

While CPB simulators are becoming a more prevalent educational tool, perfusion 

is a niche field that is technologically complex. That combination makes it difficult to get 

companies to make supporting products, such as simulators, because there is little market 

for it. Those companies that have created high fidelity CPB simulators sell them at some 

staggering costs, which make this technology out of reach for many. 

A potential solution to the expense is to build a simulator. Mock loop simulators 

can be constructed in a cost-effective manner using off-the-shelf mechanical components 

that replicate hemodynamic behavior.  Supporting software can also be developed and 

incorporated with the mock loop to create a more realistic simulation to rival costly high 

fidelity simulators.  
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2.2 Simulation at Milwaukee School of Engineering 

The MSOE Perfusion program is clinically driven and provides students didactic 

lessons with concurrent clinical experience.  The available caseloads of MSOE’s 

affiliated hospitals and small class sizes provide an abundant amount of clinical 

opportunities for students to hone their abilities. The relative size of the program and 

institution make an investment into a high fidelity simulator not financially feasible. This 

problem was approached by the faculty and students in inventive way. In partial 

fulfillment of requirements for the program, many students have used their knowledge to 

contribute to a student designed simulator.  

The current simulator was designed and implemented by Jonathan Howard to 

simulate the mechanical function of the heart and the vasculature. It is a hydrodynamic 

loop, which consists of a variety of components that mimic the variable hemodynamic 

functions, such as pressure, flow, capacitance and resistance [2]. Its purpose was to be 

used to practice initiating CPB, maintaining arterial pressure, and weaning from CPB. 

The system was designed to be simple and open to allow for additions and improvements. 

Varner later contributed to the Howard simulator by implementing a mechanical 

representation of the pulmonary circulation, variable venous compliance and additional 

pressure monitoring [3]. These additions allowed for more scenarios to be simulated 

during specified tasks.   

The development and construction of the mock loop simulator was successful but 

its implementation into the curriculum has been less effective. The current setup is used 

for catastrophic event simulations where students primarily practice cutting components 

in and out of the circuit. In an effort to bridge the gap, Posch developed a curriculum in 
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which he outlined teaching objectives to be used with the Howard-Varner simulator [7].  

The curriculum’s outlined objectives inadvertently showed limitations of the current 

simulator (i.e., continuity of case simulation and monitoring capabilities). 

 Both Howard and Varner recognized the need for simulation of patient 

monitoring devices used in clinical practice, such as a continuous inline blood gas 

monitor (CBGM). Incorporating an interactive CBGM simulation with physiologic 

values and scenarios would allow for simulations to be presented as full cases instead of 

individual tasks. It provides students an opportunity during a case simulation to practice 

scanning the circuit and troubleshooting potential problems observed via blood gas 

values. 

 

2.3 Continuous Inline Blood Gas Monitoring 

The use of CBGM in CPB cases is a topic of debate among many perfusionists. It 

is not a current standard of practice for perfusion but is a recommended guideline by the 

American Society of Extracorporeal technology (AmSECT) [8]. Some argue that the cost 

is unnecessary, and if proper blood gas assessments are done during a case, that there is 

no need for a CBGM.  However, the CBGM can offer real time blood gas data trends, 

which provides a dynamic picture, reflecting the dynamic nature of the body. Studies 

have shown improved postoperative outcomes for patients who are continually 

monitored, as well as improved blood gas management during CPB [9-11].   

For simulation purposes, having a simulated CBGM is a necessity for the simple 

reasons that using blood in a simulation is not safe or sustainable. By simulating these 

values, an instructor can create realistic scenarios that can occur while on pump. 
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3.0 Project Goal 

The scope of this thesis was to design and create a graphical user interface that 

simulates the function of a continuous blood gas monitor, such that it could be used in 

conjunction with the Howard-Varner mock circulatory loop or for in-class 

demonstrations. Specific goals were to: 

1. add the ability to monitor blood gas values that simulate physiological states 

during CPB; 

2. create a user friendly interface that instructors and students can use; 

3. allow for variable adjustments to simulate different scenarios that may occur in a 

case; 

4. create built-in scenarios that will automatically adjust blood gas values; 

5. create an accessible program that allows for use in a class setting or in 

combination with the Howard-Varner mock loop. 
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4.0 Theoretical Design 

The human body is a complex system consisting of numerous homeostatic 

feedback loops [12]. The body continually compensates in order to stay in an optimal 

range to function. If this regulation is not maintained, it can cause deleterious effects to 

the patient. This concept is crucial in perfusion.  CPB is not as functionally effective as 

the native lungs or heart. Those organs have more roles than pumping or oxygenating 

blood. Bypass essentially removes certain compensatory mechanisms of the body, which 

can be detrimental if prolonged. Proper monitoring of patient vitals and blood gases can 

be used to attenuate these negative effects of CPB. In order to implement appropriate 

homeostatic feedback mechanisms into the simulator, it is helpful to overview the 

variables measured via CBGM devices and the mathematical relationships connecting 

pertinent variables. 

 

 
Figure 3: The Display of the Terumo CDITM 500. 
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Based on the project goals, the simulator will be designed to mirror that of a 

Terumo CDITM 500 monitor (Figure 3). Listed in Table 1 are the physiologic parameters 

displayed on a CDI and the operating ranges. Note that although these are called inline 

blood gas monitors, they actually measure a few variables, such as potassium, pH, and 

temperature, which are not blood gases. This project was meant to incorporate these 

variables as well.  

 

Table 1: Operational and Display Ranges of the Terumo CDI™ 500 [13]. 
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The only “patient” specifications required are the operational values of a CDI 500 

CBGM display. The simulator should cover similar ranges that can be displayed on such 

a monitor (Table 1), but should ensure that under normal “patient” conditions, the values 

displayed are within the normal ranges (Table 2). The simulator design was meant to 

include a range for each of these physiologic values that a perfusionist might encounter, 

as discussed in the sections to follow. Each section will discuss the physiological 

homeostatic models pertinent to blood gas assessment and its indications during CPB, 

which form the underlying models and relationships for programming into a simulator. 

Table 2: Normal Blood Gas Values [12, 14, 15]. 

Blood Gas Variable Normal Value 

pH 7.35 - 7.45 

Partial Pressure of Oxygen 100 - 400 mmHg 

O2 Arterial Saturation 96 - 100% 

Partial Pressure of Carbon 
Dioxide 

35 - 45 mmHg 

Base Excess ± 2.5 

Bicarbonate ion 22 – 28 mEq/L 

Potassium 3.5 – 5 mEq/L 

Hemoglobin 12 - 16 g/dL 

Hematocrit 22 – 38% 

Mixed Venous Saturation 73 – 77% 

Temperature 
35 - 37° C 

(normothermic) 

O2 Consumption 200 – 250 mL/min 

Flow rate 2 – 2.5 L/min/m2 
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4.1 Acid-Base Balance 

The acid-base balance is commonly referred to in terms of a pH value. The 

potential of hydrogen (pH) is defined by Encyclopedia Britannica as the quantitative 

measure of the acidity or basicity of aqueous or other liquid solutions [16]. It is derived 

from the concentration of hydrogen ions shown in Equation (1):  

 pH = −log [Hା]. (1) 

In human blood, the measure can vary between 7.35 to 7.45 [17]. The small range 

is optimal environment to sustain the metabolic function of cells [14]. It is maintained by 

chemical and physiological buffers of the body.   

The most effective chemical buffers in blood are the red blood cells (RBC) which 

facilitate the bicarbonate buffer system [14]. Carbon Dioxide (CO2) is released from 

tissues as a result of cellular metabolic activity. It enters the RBC and binds with water 

(H2O) in the presence of carbonic anhydrase to form carbonic acid (H2CO3). The 

dissociation of the weak acid results in a hydrogen (H+) and bicarbonate ion (HCO3
-) 

[18]. The chemical reaction occurring as a result of the buffer can be seen in Equation 

(2): 

 
COଶ + HଶO ↔ HଶCOଷ ↔ Hା + HCOଷ

ି. (2) 

 

The pH is inversely related to the H+ concentration. An increase in H+ ions 

decreases the pH (acidic), while an increase in HCO3
- ions increases the pH (alkalotic). 

To maintain electrical neutrality, the H+ ions bind to the Hemoglobin in the RBC and the 

bicarbonate diffuses into the plasma as chloride ions diffuse in, thus completing a 
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chloride shift [18]. This quick response buffer allows for the transport and removal of 

CO2 without causing a major change in pH. 

The normal ratio of bicarbonate to carbonic acid is 24:1.2 or 20:1. Deviations 

from this ratio affect the blood pH [17]. This relationship is described in the Henderson-

Hasselbach equation [12], Equation (3): 

 
pH = pK + log

HCOଷ
ି

0.03xpCOଶ
 . (3) 

 

The Henderson-Hasselbach equation is derived with respect to mass balance [12]. 

Mass balance is the concept that the concentration of H+ and HCO3
- are proportional to 

the concentration of carbonic acid [12]. The proportion of dissociated ions to the acid is 

called the dissociation constant (pK) which is 6.1 for bicarbonate [12]. The concentration 

of CO2 is used in this equation because it is directly proportional to the concentration of 

undissociated carbonic acid. The more common form of measurement of CO2 is as a 

partial pressure so the solubility coefficient (0.03mmol/mmHg) is used to determine the 

concentration [12]. From Equation (3), the pH can be calculated if the concentration of 

HCO3
- and partial pressure of CO2 are known. 

Physiological buffers of the body that help to regulate pH are the functions of the 

kidneys and lungs. The bicarbonate buffer system is fast acting, but the kidneys and lung 

can compensate for acid-base disturbances [17]. The lungs regulate the removal of CO2. 

If there is excess H+ due to high CO2, it can be reduced with respiration within a couple 

of minutes [12]. The kidneys can excrete or retain H+ ion, retain HCO3
-, and regenerate 

HCO3
- from H2O and CO2 to compensate for an alkalotic or acidotic state [17]. However, 

this process can take up to days to occur.  
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This is where the pH becomes very important for a perfusionist. During CPB, the 

heart and lungs of a patient are bypassed [19]. The role of the perfusionist during surgery 

is not only to oxygenate the blood but to take on the compensatory role of the lungs. 

Perfusionists are able to control the pCO2 of the patient by adjusting the sweep rate, 

which is the flow of mixed oxygen and medical air through the oxygenator. Increasing 

the rate removes more CO2 from the blood. The concentration of HCO3
- can also be 

altered by the perfusionist during CPB with the addition of a sodium bicarbonate 

solution. Understanding the relationship between pH, CO2, and HCO3
- is necessary in 

maintaining physiologically normal pH during a case. Additionally, this knowledge will 

help with managing patients with comorbidities that may affect the function of the lungs 

or kidneys and the normal pH state. Figure 4 shows the relationship of the pH, CO2, and 

HCO3
- , along with corresponding conditions. 
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Figure 4: The Relationship Between Blood pH, pCO2, and HCO3
- [17]. 

 

Another value used in assessment of the acid-base balance is the base excess 

(BE). The BE is a reference variable derived from the pH, pCO2, hemoglobin 

concentration and arterial saturation, as seen in Equation (4). Equation (4) is the Zander 

variation of the Siggaard-Andersen equation [20]. BE is defined as the concentration of 

titratable H+ required to return pH to 7.4 when PCO2 is constant at 40 mmHg [21]. The 

normal range is +/- 2 mEq/L [14]. This value is primarily used to assess the metabolic 

contribution to an acid-base disorder. If the value of BE is greater than 2mEq/L, it is 

indicative of metabolic Alkalosis, where a value less than -2mEq/L indicates metabolic 
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acidosis [17]. Recognizing the BE value is helpful in classifying the cause of the disorder 

and taking appropriate measure to fix it. Equation (4) follows: 

 

 BE = ቀ1 − 0.0143 ∗ Hgb
୥

ୢ୐
ቁ ∗  ቂቄ0.03 

୫୫୭୪

୫୫ୌ୥
 ∗  pCOଶ ∗ 10୮ୌି଺.ଵ −

24.26ቅ + (9.5 + 1.63 ∗ Hgb) ∗ (pH − 7.4)ቃ − 0.2 ∗ Hgb ∗ (1 − SୟOଶ).  
(4) 

 

Simulated changes in pH will allow students to troubleshoot different scenarios 

that can be present during a surgical case. A low pH is indicative of acidosis, but 

supporting values such as CO2 and HCO3
- can help to determine the cause and find an 

appropriate response. The simulator will use Equations (3) and (4) to replicate scenarios 

that represent acid-base disorders that can occur, such as respiratory acidosis or metabolic 

alkalosis. This allows an instructor to change values that a student is observing on a 

monitor. It will test the ability of the student to recognize changes in their scan of the 

CPB circuit and understanding of the body’s compensatory mechanisms. 

 

4.2 The Oxyhemoglobin Dissociation Curve 

The oxyhemoglobin dissociation curve, shown in Figure 5, is representative of the 

nonlinear relationship between hemoglobin (Hgb) and oxygen (O2) in the blood. As the 

partial pressure of oxygen (pO2) increases, so does the percentage of Hgb bound to O2, 

also referred to as saturation [12]. The curve shows another homeostatic mechanism of 

the body. The plateaued region at the top of the curve from 60 mmHg of pO2 and up 

shows that the oxygen saturation is around 90% or greater. The normal alveolar pO2 is 

around 104 mmHg with a saturation of 95-97% [12].  
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Figure 5: The Oxyhemoglobin Dissociation Curve [12]. 

 

 The plateau of the curve is significant because it shows that the body can 

maintain relatively normal saturations when there are large shifts in pO2. The steep 

portion of the curve is an important indicator of the release of O2 in the tissues. As blood 

transports O2 through the capillaries, the pO2 follows the gradient for diffusion from 

hemoglobin into the tissues. The result is a drop in pO2 to around 40 mmHg, which is 

normal for venous blood [12]. Equation (5) is a simplified predictive model developed by 

Severinghaus [22] that calculates the saturation based on the pO2 following the 

dissociation curve: 

 
SO2(%)= ቈ൬ቀ൫PO2

3+150*PO2൯
-1

*23400ቁ +1൰
-1

቉. (5) 

 

There are many factors that can affect the oxyhemoglobin dissociation curve, such 

as temperature, pCO2, and pH [12]. Changes in these variables can change the Hgb 

affinity for O2, which can result in shifts in the oxyhemoglobin dissociation curve [14]. 
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Equation (5) is limited in regards to reflecting shifts in the curve, but it provides a simple 

but realistic physiological model to estimate the arterial saturation and can be easily 

implemented for simulation purposes.  

Although the arterial saturation is important to determine if hemoglobin is binding 

to oxygen for transport, it does not provide the O2 content being delivered to the body. A 

more telling sign of O2 transport is the mixed venous saturation (SVO2). The SVO2 can 

help indicate whether the O2 supply is meeting the demands of the body. The normal 

SVO2 is around 75%; if this value experiences a change greater than 10%, it can be 

indicative of an issue with perfusion [14].  The gas transfer equations – Equation (6), (7), 

(8), (9) -- and blood gas values can give more insight into the oxygen transport of the 

patient [14]: 

 
O2 Capacity ቀ

mL O2

dL
ቁ =1.34*Hgb+0.003*pO2, (6) 

 
O2 Content ൬

mL O2

dL
൰ =1.34*Hgb*% Saturation(decimal form)+0.003*pO2, (7) 

 
O2 Saturation=O2 Content / O2 Capacity, (8) 

 
and O2 Consumption ቀ

mL O2

min
ቁ =(∆OଶContent)* Flow(L/min)*10(dL/L). (9) 

 

Hgb is responsible for about 97% of the oxygen transported from the lungs to the 

tissues [12]. The saturation of Hgb does not ensure adequate oxygen delivery. During 

CPB, hemodilution can drop the Hgb concentration. Decreased amounts of Hgb reduce 

the ability to transfer O2. A scenario like this can be approached by increasing the flow to 

the patient to increase the O2 delivered or add additional Hgb to increase the carrying 
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capability. Looking at all the values is important before choosing a course of action.  The 

role of the simulation is to reinforce assessment before action.  

The relationship between the oxyhemoglobin dissociation curve and O2 transfer 

equations is important in providing adequate perfusion to the patient. Understanding the 

interplay of variables can help in diagnosing cause of changes in SVO2 or determining if 

the supply of O2 matches the need. Simulating these variables using Equations (5) 

through (9) will provide a model that can reflect scenarios such as hypoxia that can be 

attributed to the multiple factors that affect O2 transfer. 

 

4.3 Non-Gas Values Measured by CDITM 500 Inline Monitoring System  

4.3.1 Potassium (K+) 

Potassium (K+) is the major intracellular ion. Ninety-eight percent of the 

potassium in the body is found intracellularly [14]. The normal concentration for K+ in 

blood is 3.5-5.0 mEq/L, while the intracellular concentration is approximately 140 mEq/L 

[12]. Conditions such as hyperkalemia and hypokalemia can inhibit the propagation of 

action potentials [12]. The presence of increased extracellular K+, hyperkalemia, can 

affect the heart’s contraction, rhythm and conduction [12]. A reduced concentration 

gradient can partially depolarize the membrane, causing a low intensity action potential 

which can make the contraction of the heart weaker [12]. If the concentration of K+ 

doubles or triples in the blood, it can cause weak contractions and arrhythmias that can be 

fatal. This is why it is important to monitor K+ concentration during surgery to avoid 

impairing function when coming off CPB. 
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Increased levels of K+ can be caused by multiple conditions or actions. Often 

during CPB, a cardioplegia solution containing K+ is used to arrest the heart by 

depolarizing the cells [19]. It is reversible but can increase the amount of K+ in the blood. 

Hormonal and acid-base responses to CPB can also affect K+ concentration. Cortisol and 

aldosterone increase the urinary secretion of K+, but kidney dysfunction can result in 

accumulation [17, 19]. Conditions affecting the concentration of K+ while on CPB can be 

managed pharmacologically by giving sodium bicarbonate or insulin and glucose, which 

pulls K+ into the cells [14]. The practice of zero balance ultrafiltration (Z-BUF), which 

entails hemoconcentrating blood and replacing volume with low K+ solution, is also 

effective in reducing the concentration [19]. 

Simulation of ion would be difficult in a mathematical model because of the 

multitude of factors that can affect it. However, since the simulation is specific to CPB, 

the instructor can change the value within the operational range to reflect changes that 

may occur in a surgery or exhibit preexisting conditions of the patient. 

 

4.3.2 Temperature 

The temperature of a patient can affect many of the blood gas parameters during 

CPB. Variations in temperature can cause shifts in the oxyhemoglobin dissociation curve 

and alter the acid-base relationship by affecting the solubility of gases [12, 17, 19]. 

Temperature is difficult to model because of its numerous direct and indirect effects. 

For simulation purposes, certain temperature effects can be simulated without 

creating a complex model, but instead by changing values that can be affected by it. An 

example is the O2 consumption, where a decrease in temperature is associated with 
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decreased metabolic activity [19]. Changing the temperature and O2 consumption will 

simulate to a student a change in metabolism due to temperature. 

 

4.3.3 Hematocrit 

The hematocrit is the percentage of whole blood that is made up of red blood 

cells. In an average adult, this percentage can range from 38 to 54% [18]. Hematocrit 

(Hct) indicates the volume of red blood cells, which can approximate oxygen carrying 

capacity of the blood.  

During CPB, the hemodilution from the CPB prime can cause the hematocrit to 

drop to a range of 22 to 34% [14].  The increase in non-cellular volume can within limits 

overcome the decreased O2 capacity by increasing the cardiac output from the pump. 

Moderate hemodilution is seen as an advantage to decrease the viscosity of blood to 

improve blood flow to microvasculature. However, if the patient becomes too dilute, this 

can reduce the oxygen delivery to the tissues [19].  

A change in Hct can be telling of other conditions, such as anemia or 

polycythemia [12].  Continuous monitoring of Hct during CPB is a standard in clinical 

practice [8]. For simulation purposes, the value of Hct will be determined by tripling the 

Hgb concentration. This estimation is commonly used because the Hgb is the determining 

factor in oxygen transport. 
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5.0 Implementation of Design  

Prior to modeling the systems outlined in Section 4.0, the variables for simulation 

needed to be classified as independent or dependent. The independent variables were 

those associated with parameters that can be controlled or affected directly by the actions 

of the perfusionist. Identifying the variables in such a manner allows for students to enact 

changes to maintain normal values. The dependent variables are the variables that are 

indirectly affected. In Table 3, the independent variables are listed with their associated 

CPB control mechanism. From the independent variables, the remaining variables were 

derived.  

 

Table 3: Independent Variables and their Corresponding Mechanism of Control During 
Cardiopulmonary Bypass [12, 19]. 

Independent 
Variables 

CPB Mechanisms of Control 

pCO2 Sweep rate through an oxygenator can alter the amount of pCO2. 

pO2 

The fraction of inspired oxygen supplied to the oxygenator can 
be increased or decreased which proportionally changes PO2 in 
the blood. 

HCO3
- Bicarbonate ion concentration can be altered by adding Sodium 

bicarbonate. 

Hgb 
The concentration of Hgb can be changed through hemodilution 
or transfusion. 

Flow CPB pump speed is variable. 

K+ Potassium concentration can be altered pharmacologically (i.e., 
insulin, NaHCO3, KCl) or through methods like Z-BUFing. 

VO2 
Patient O2 consumption can be altered with changed in 
temperature and use of anesthetic agents. 

Temperature 
The temperature of the patient can be adjusted or maintained 
during CPB with the use of a heater cooler system. 
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The models represented in the simulation are the acid-base and oxyhemoglobin 

dissociation curve as described in Sections 4.1 and 4.2. Some of the independent 

variables are not modeled in this simulation due to the complexity of their interactions 

with other physiologic systems.  For simulation purposes, such variables as potassium 

and temperature were left autonomous from all other variables, but their values could still 

be changed by the user. They can be adjusted to simply mimic some physiological 

scenarios seen during CPB, such as cardioplegia delivery, but will have no effect on other 

values. The use of these values would be instructor dependent. 

 

5.1 Acid-Base Model  

In order to reproduce the Acid-Base model, the Henderson-Hasselbach equation, 

Equation (3), was used to determine the pH of the system and the Sigaard-Andersen 

equation, Equation (4), was used to determine BE. The equations were used to solve for 

pH and BE because the HCO3
- and the pCO2 can be altered by actions of the perfusionist.  

The HCO3
- concentration can be increased by the addition of sodium bicarbonate to the 

system [19]. The renal system of the body can also be a determinant of the HCO3
- 

concentration -- if there is impaired function the concentration may be low [12]. As for 

pCO2, the pressure can be changed by altering the sweep rate of the CPB circuit [19]. 

Since the oxygenators function via diffusion, the pressure gradient across the membrane 

affects the rate of diffusion [19]. The gas being supplied to the oxygenator is a mixture of 

oxygen and medical air which contains the normal concentration of carbon dioxide in the 

room air, which creates the gradient of CO2 from the blood to the oxygenator. Increased 

sweep rate maintains a larger pressure gradient, which causes a decrease in pCO2 [19]. 
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The use of pCO2 and HCO3
- as independent variables allows the simulated model to more 

accurately resemble CPB. 

 

5.2 Oxyhemoglobin Dissociation Curve Model  

To simulate oxygen delivery and consumption of a patient, Equation (5) and 

Equations (6) through (9) were used to solve for the saturation of arterial and venous 

blood. This model was split into two separate equations. The arterial saturation was 

estimated using Equation (5), which uses the pO2 as its determining factor. The pO2 can 

be altered by changing the fraction of inspired oxygen (FiO2), which proportionally alters 

the partial pressure [19]. 

The model for the venous saturation has multiple determinants. While the 

measured saturation is typically used to determine oxygen consumption, SvO2 is a 

dependent variable that cannot be directly changed. This model was altered to match the 

effects of CPB and other surgical factors. Independent variables listed in Table 3 that 

affect the venous saturation include pO2, Hgb, flow, and VO2. The Hgb concentration can 

be affected by hemodilution, ultrafiltration, blood salvaging, or addition of red blood 

cells. While the concentration of Hgb may not affect the arterial saturation, it does limit 

the oxygen carrying capabilities of the blood. If there is not enough oxygen delivered, the 

SvO2 will reflect this even if the flow to the patient and metabolic consumption are 

normal [12]. Blood flow affects the rate at which the oxygen is delivered to the tissues 

and is controlled by the speed of arterial pump [19]. If the flow is too low, the SvO2 

would decrease because more of the oxygen is extracted from the available content [12]. 

The final determinant is the consumption of oxygen. Patient metabolism can be affected 
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by manageable factors, such as anesthetic agents and temperature, or concurrent 

conditions such as sepsis. In order to solve for SvO2, Equation (8) was specified for 

saturation in Equation (10): 

 S୴Oଶ = Venous Oଶ Content / Oଶ Capacity. (10) 

 

Equation (6) was substituted into Equation (10) to create Equation Error! Reference 

source not found.: 

 S୴Oଶ = Venous Oଶ Content /(1.34 ∗ Hgb + 0.003 ∗ pOଶ) . (11) 

 

Equation (7) could not be used because the equation contained SvO2 as a variable. 

Instead, Equation (9) was rearranged to solve for venous oxygen content in Equation 

(12): 

 
C୴Oଶ ൬

 mL Oଶ

dL
൰ =  CୟOଶ −

VOଶ

(Q ∗ 10)
 . (12) 

 

Equations (7) and (12) were then substituted into Equation Error! Reference source not 

found. to create the final venous saturation equation, Equation (13): 

 

S୴Oଶ =
(1.34 ∗ Hgb ∗ SୟOଶ + 0.003 ∗ pOଶ) −

VOଶ
(Flow ∗ 10)

(1.34 ∗ Hgb + 0.003 ∗ pOଶ)
. 

(13) 

 

 Equation (13) provides the model to depict SvO2 changes due to multiple variables 

that can be controlled during CPB.  The model allows students to evaluate changes in the 

SvO2 and alter them via CPB practices. 
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5.3 Program Development 

To create a user friendly interface, the CBGM simulation was developed using the 

high level language in MATLAB® version 9.1 [23]. This platform was chosen for 

familiarity and the intuitive nature of the language. The current platform also has a GUI 

development environment (GUIDE), which was used to develop and easily edit the 

layout of the GUI [23]. This environment will also make it easier for additional 

developments to be carried out in the future. 

Before programing, the function and variables of a program were defined. From 

the equations listed in Sections 5.1 and 5.2, a programmed script was developed to have 

the independent variables as inputs and dependent variables as outputs of the equations. 

The inputs needed to be collected from the user interface. 

A goal of this simulation is to create an interactive user interface that can be 

adjusted by an instructor and display blood gas to the student for evaluation. To meet 

those needs, the program was designed to have two windows.  The GUIs were created 

using GUIDE. One window was designed (Figure 6) to display the blood gas values in 

the fashion of a Terumo CDITM 500 display (Section 4.0, Figure 3). The second window 

was designed to be the controlling GUI that had the capabilities to alter the blood gas 

values (Figure 7). 
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Figure 6: Monitor Display Design created in MATLAB® GUIDE. 

 

 

Figure 7: The User Controlled Interface. 
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The display window (Figure 7) has no interactive controls. Its purpose was only to 

display the data from the control GUI. Static text boxes and panels were used in the 

display layout. Each component in the display and design window was edited in the 

property inspector tables or through code. The design of the control window in Figure 7 

has many user interface controls (uicontrols). Each independent variable listed in Table 3 

was given its own edit box and slider bar uicontrols to change the values easily. The 

operational values from Table 1 were used to create ranges of values for each 

independent variable. Additionally, pushbutton controls were created with preset values 

for easy simulation of specific scenarios. The option for body surface area was also added 

for creating a patient-specific case; the only variable affected by this option is the VO2, 

which is then indexed.  

After the GUI layouts were complete, they were saved to a single file called 

CILBGM. The display was saved under the name of CILBGM.fig and the control under 

CILBGMC2.fig. Saving the work in GUIDE produced a programing script and 

MATLAB® file of the same name containing the code for each of the GUI (Appendix A). 

The interactive uicontrol component code was included in the main GUI code for each 

window.  Each uicontrol has a callback function that runs the specific code when the 

uicontrol is activated [23]. The pseudocode for the simulation is shown in Figure 8. 
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Figure 8: Pseudocode for Simulation Program. 
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The uicontrol code for all the interactive controls in the controller were changed 

to make sure the proper components were interacting. For the slider bar components, 

when the slider was moved, the value of the slider changed. However, the value of the 

edit box associated with the slider would not reflect the value change. Code was added to 

the slider callback function so that when the slider was activated, the value of the slider 

would be used to set the text string within the box.  The components have different data 

types and needed to be corrected when sharing data. The edit box had the same problem-- 

when a value was entered, the value did not change the position of the slider. The 

callback function of the edit box was given code to set the value of the slider when 

activated. This process was repeated for all the sliders and edit boxes on the controller. 

Another control featured on the controlling GUI were multiple pushbuttons. Each 

pushbutton was created to simulate particular scenarios when the button was pushed. In 

order to do that, code was added to the pushbutton callback functions to set the variables 

of all of the independent components to the specified values of the code. These values 

were numbers chosen out of the normal physiologic range to show how values can be 

indicative of different conditions. 

A final uicontrol on the controlling GUI was a radio button. When activated, an 

edit box was to display that allowed addition of, or editing, of the BSA. This function 

was a bit more challenging because the edit box had to be set to invisible in its opening 

function. The callback function of the radio button needed an “if” statement. When the 

radio button was active, the value was one, and when it was inactive, it was zero. The if 

statement was set up so that if the value was one, the edit box visibility would be turned 

on, but if zero, it would remain off. 
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After the independent controls worked together, the models needed to be 

implemented. The function gatherdata was created to collect the current value of each 

independent value, calculate the values of the dependent values, and then create an array 

containing all of data. This function was used in every unicontrol callback code to ensure 

that the simulation values were up to date with every user change. From these data, all of 

the desired values can be displayed. 

In order to update the values in the controller, another user function, called 

Update, was created to take the data array produced from gatherdata. This function 

prevented calculation interruptions by updating all the values at once, after the 

calculations had been complete. This function also stored the data array in the root and 

called a function in the display GUI. A final function called UpdateDisplay, created in the 

code of the display GUI, was designed to get the stored data array and update all the 

values in the display. Additional features were added to the code including error warnings 

for using incorrect values or values out of the operational range.  

 

5.4 Simulation Testing 

In order to test the simulation, each programed component needed to be tested. 

This was accomplished by running the simulation and changing the values of the 

independent variables. If the change in value appeared in each GUI window, and the 

components associated with that variable, then the code was functioning properly. Also 

tested were the error warnings by inputting improper number or characters into the edit 

boxes. 
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Testing of the modeling equations was performed by running the simulation and 

collecting the data points of the related variables. The independent variables were isolated 

within their specific model to determine the relationship between that variable and 

dependent variable. The values were collected at multiple points within the simulation’s 

operational range and graphed to visualize if the model reflects behavior seen in 

physiology. The graphs are shown in Section 6.2. 
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6.0 Results 

6.1 User Interface Testing 

Testing the interactive components showed that they met the goals of the project.  

When the program CILBGM.m was run in the editor of MATLAB®, it displayed the two 

GUI windows (Figure 9). When any independent variables were changed in the 

controller, the program appropriately updated the display and any dependent variables. If 

values were changed out of range, or incorrect characters were used, error boxes 

displayed, the program was paused, and the variable was reset to its default value. The 

pushbuttons returned the values set in the code and updated all of the displayed data. The 

radio button activation resulted in the pop-up of an editable box for BSA input and the 

units of consumption were indexed. All the functional components of the program 

completed their desired task. 
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Figure 9: The Simulation Windows Shown on Two Monitors. 

 

6.2 Physiologic Model Testing 

6.2.1 Acid-Base Model 

The results of simulating the acid-base model are shown in Figure 10 through 

Figure 15. The graphs show the relationship of the independent variable with the 

dependent variable. Figure 10 was generated by holding the pCO2 constant as the 

concentration of the bicarbonate ion is altered. As shown, the increase in HCO3
- causes an 

increase in the pH. In Figure 11, the HCO3
- was held constant as pCO2 was changed. The 

increase in pCO2 results in a drop in pH, which is consistent with the physiology that is 

described in Section 4.1. Figure 12 was generated when both the pCO2 and the HCO3
- 
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concentration were altered. Their combined effect on pH is a good representation of how 

the body can compensate to maintain a normal pH. The ranges exceed normal values, but 

the responses correspond with bodily function. 

 

 

 

Figure 10: The Effect of HCO3
- on the pH. 
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Figure 11: The Effect of PCO2 when HCO3
- is Held Constant. 

 

 

Figure 12: The Effect of PCO2 and HCO3
- on pH. 
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The BE was also graphed against its determining variables and results are shown 

in Figure 13 to Figure 16. Each graph isolated one independent variable of the BE. In 

Figure 13, the increase in pCO2 causes a shift from base excess to base deficit. At around 

40 mmHg, which is considered normal, the BE is approximately zero.  In Figure 14, the 

relationship shows the increased pO2 reduces the base deficit when all other variables 

were held constant. 

 

 

 

Figure 13: The Effect of pCO2 on Base Excess. 
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Figure 14: The Effect of pO2 on Base Excess. 

 

Figure 15 illustrates the strong effect the increasing of the HCO3
- has on BE. 

Recall that BE is an indicator for metabolic contribution to pH, so it makes sense that the 

HCO3
- is a dominant factor in BE. The HCO3

- is the main chemical buffer in the body 

regulated by the renal system. If that buffering system is not working properly, the result 

will be evident in the BE. 
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Figure 15: The Effect of HCO3
- on Base Excess. 

 

6.2.2 The Oxyhemoglobin Dissociation Curve Model 

The dissociation curve and oxygen transfer equations – Equations (5) and (13), 

respectively-- were tested in the same manner as the acid-base model. The results are 

shown in Figure 16 to Figure 20. The first graph in the series is the oxyhemoglobin 

dissociation curve as estimated by the simple Severinghaus equation, Equation (5). The 

equation appears to be fairly accurate in determining the saturation from the partial 

pressure.  Indicated in Figure 16 are two reference points that list the saturation at the 

pO2. The values are associated with the normal arterial saturation and normal venous 

saturation. 
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Figure 16: The Estimated Oxygen Saturation from pO2 using the Severinghaus Equation. 

 

The remainder of the graphs display the effects of the independent variables on 

the venous saturation.  Increasing the flow (Figure 17), the Hgb (Figure 18), and the pO2 

(Figure 19) all increase the SvO2. The response is reasonable because each variable 

increased the oxygen delivery capability.  One thing to notice is that a decrease in flow 

(Figure 17) or pO2 (Figure 19) past a certain value, the saturation values become negative 

in the graph.  This cannot happen in real-life and is a consequence of assuming a constant 

metabolic rate, even when it cannot be met with delivery of oxygen. Because these 

negative values occur at extremely low flow and pO2, they should not be encountered in 

the simulation. The graphs also display the many ways the body can compensate to 

maintain oxygen delivery. The only graph to display a negative correlation to venous 

saturation is that of oxygen consumption (Figure 20). The response is logical when other 
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variables are held constant -- the supply is constant but the demand increases. More 

oxygen is pulled from the blood, which causes the decrease in venous saturation. 

 

 

Figure 17: The Effect of Flow on the Venous Saturation. 
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Figure 18: The Effect of Hemoglobin Concentration on the Venous Saturation. 

 

 

Figure 19: The Effect of pO2 on Venous Saturation. 
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Figure 20: The Effect of Oxygen Consumption on Venous Saturation. 
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7.0 Discussion 

The virtual simulation designed in this project was done to provide a more 

complete representation of perfusion when used with the Howard-Varner simulator. From 

the results, the modeled systems are expected to present physiologically realistic 

scenarios and responses to user input. Students can now practice monitoring patient blood 

gas as a part of the simulation, which was not available in the original simulator. 

Instructors can also use this virtual simulation as an adjunct to class lectures. 

The specifications of the project were met by limiting the value ranges in the code 

to that of the operational ranges from Table 1. Additional code was included to present 

error messages if the user were to exceed the range or use inappropriate characters. These 

features were tested during simulation and shown to be effective. 

Understanding the homeostatic functions of the body will build students’ ability to 

assess and compensate while on bypass. The modeled systems of simulator were able to 

depict the relationship of the blood gas values to that of the controlling features of the 

CPB setup. By changing the values of the simulation, multiple scenarios can be depicted 

and students can assess and determine the course of action. The instructor will be able to 

simulate the effect of the action by altering the corresponding variable of the correction. 

Students will be able to see the result of their choice on the display monitor.  

With the addition of the virtual simulator to the current mechanical model, 

students will be enabled to not only initiate or terminate bypass, but also to simulate 

situations that occur while on bypass. The software program will prepare students for 

clinical situations and help them to develop their understanding of homeostatic 

mechanisms in relation to CPB. By effectively adding this aspect, the simulation at 
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Milwaukee School of Engineering is now more immersive for students. This software can 

be incorporated into the simulation and classroom curriculum, which will increase 

students’ understanding and allow them to be more clinically prepared before using their 

knowledge in the operating room. 

7.1 Future Improvements 

Although the addition of the virtual simulation increases the possible scenarios 

and utility of the original simulator, there are multiple additions and improvements that 

can be made. Many improvements were outlined by Howard and Varner [2, 3]. 

A limiting factor of this project and design are the models used. The simulation 

was more simplified to establish that a simulation of this kind was feasible. In a future, 

incorporating more dynamic feedback systems would be beneficial in producing the more 

realistic simulation for students.  A future system could include correction equations to 

account for changes in temperature for scenarios such as deep hypothermia and pH stat 

blood management [19]. Additionally, this program could be used as a launching point to 

create virtual simulation displays for other monitoring systems, such as EKG. Simulating 

changes in EKG would allow students more opportunities to interpret and understand the 

meaning behind the changes. 

Overall, the simulator program needs to become more computer-based. 

Simulating scenarios from one modeled program using interactive feedback loops will 

create the most realistic environment for students to learn and practice skills. It will 

reduce the necessity of changing components manually and can provide more specific 

patient scenarios. 
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8.0 Conclusion 

The goal of this thesis project was to design and implement a graphical user 

interface that simulates the function of a continuous blood gas monitor, such that it could 

be used in conjunction with the Howard-Varner mock circulatory loop. With the 

successful addition of this program, students now have a more complete simulation 

model which can include perfusion practices while on CPB.  

The additions to the Howard-Varner simulator were successfully incorporated and 

provided a physiologically accurate blood gas model.  It is now possible for students to 

assess and diagnose changes in blood gas values, and then through CPB controls, to treat 

the cause. While there are still plenty of improvements that can be made, the current 

simulator is an effective tool in honing a variety of skills necessary to the practice of 

perfusion. The perfusion program at MSOE can now incorporate a simulated blood gas 

monitor into the simulator program and core curriculum. This simulation can be used to 

teach students and bridge the gap between clinical evaluation and physiological 

understanding. 
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Appendix A: MATLAB Code 

CILBGM.m 

function varargout = CILBGM(varargin) 
% CILBGM MATLAB code for CILBGM.fig 
%      CILBGM, by itself, creates a new CILBGM or raises the existing 
%      singleton*. 
% 
%      H = CILBGM returns the handle to a new CILBGM or the handle to 
%      the existing singleton*. 
% 
%      CILBGM('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in CILBGM.M with the given input 
arguments. 
% 
%      CILBGM('Property','Value',...) creates a new CILBGM or raises 
the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before CILBGM_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to CILBGM_OpeningFcn via varargin. 
% 
%    
% 
% Edit the above text to modify the response to help CILBGM 
  
% Last Modified by GUIDE v2.5 09-Feb-2017 13:31:51 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @CILBGM_OpeningFcn, ... 
                   'gui_OutputFcn',  @CILBGM_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before CILBGM is made visible. 
function CILBGM_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to CILBGM (see VARARGIN) 
  
  
% Choose default command line output for CILBGM 
handles.output = hObject; 
  
CILBGMC2; % starts the Control figure created with the name CILBGMC2. 
  
% Update handles structure 
guidata(hObject, handles); 
  
% sets the Display as the current figure in the stored data so it can 
be 
% retrieved on any gui.  
setappdata(0  , 'Display'    , gcf); 
%sets the UpdatDisplay as the callback for the function in this figure 
setappdata(gcf, 'UpdateDisplay', @UpdateDisplay) 
  
  
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = CILBGM_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
function UpdateDisplay 
% This function was created to update the data displayed in the CILBGM 
% figure to match that created by the controller. 
  
% This equation gets the stored data that saved the display figure with 
the 
% tag 'Display'. 
Display=getappdata(0,'Display'); 
  
% Data is then the set to the data stored in the gui. When calling the 
% UpdateDisplay function the (Display,'data') must be set using 
setappdata. 
data=getappdata(Display,'data'); 
VO2units=getappdata(Display,'VO2units'); 
  
handles= guihandles(CILBGM);    % sets the handles to that of figure 
CILBGM 
%                                 which is being used as the display 
% 
%   The following are the positions on the collected data in the data 
%   array. 
% 
%   d(1)= pH value 
%   d(2)= PCO2 slider value 
%   d(3)= PO2 slider value 
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%   d(4)= Temp slider Value 
%   d(5)= Hgb slider Value 
%   d(6)= SVO2 slider Value 
%   d(7)= K slider value 
%   d(8)= Q slider value 
%   d(9)= HCT calculated value 
%   d(10)= HCO3 calculated value 
%   d(11)= BE calculated Value 
%   d(12)= SaO2 calculated Value 
%   d(13)= VO2 calculated Value 
% 
% the following code set the values of the Display to those from the 
data 
% array that was built in CILBGMC2 
  
set(handles.dVO2units,'String',VO2units); 
set(handles.dHCO3text,'String',sprintf('%0.0f',data(1))) 
set(handles.PCO2text,'String',sprintf('%0.0f',data(2))) 
set(handles.PO2text,'String',sprintf('%0.0f',data(3))) 
set(handles.Temptext,'String',sprintf('%0.1f',data(4))) 
set(handles.pHtext,'String',sprintf('%0.2f',data(10))) 
set(handles.dBEtext,'String',sprintf('%0.0f',data(11))) 
set(handles.dSO2text,'String',sprintf('%0.0f',data(12))) 
set(handles.dHCTtext,'String',sprintf('%0.0f',data(9))) 
set(handles.Hgbtext,'String',sprintf('%0.1f',data(5))) 
set(handles.dVO2text,'String',sprintf('%0.0f',data(6))) 
set(handles.Ktext,'String',sprintf('%0.1f',data(7))) 
set(handles.SVO2text,'String',sprintf('%0.0f',data(13))) 
set(handles.Qtext,'String',sprintf('%0.1f',data(8))) 
 
CILBGMC2.m 

function varargout = CILBGMC2(varargin) 
% CILBGMC2 MATLAB code for CILBGMC2.fig 
%      CILBGMC2, by itself, creates a new CILBGMC2 or raises the 
existing 
%      singleton*. 
% 
%      H = CILBGMC2 returns the handle to a new CILBGMC2 or the handle 
to 
%      the existing singleton*. 
% 
%      CILBGMC2('CALLBACK',hObject,eventData,handles,...) calls the 
local 
%      function named CALLBACK in CILBGMC2.M with the given input 
arguments. 
% 
%      CILBGMC2('Property','Value',...) creates a new CILBGMC2 or 
raises the 
%      existing singleton*.  Starting from the left, property value 
pairs are 
%      applied to the GUI before CILBGMC2_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 
application 
%      stop.  All inputs are passed to CILBGMC2_OpeningFcn via 
varargin. 
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% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 
one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help CILBGMC2 
  
% Last Modified by GUIDE v2.5 07-Feb-2017 21:15:42 
  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @CILBGMC2_OpeningFcn, ... 
                   'gui_OutputFcn',  @CILBGMC2_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
  
% --- Executes just before CILBGMC2 is made visible. 
function CILBGMC2_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to CILBGMC2 (see VARARGIN) 
  
% Choose default command line output for CILBGMC2 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
  
  
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = CILBGMC2_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
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varargout{1} = handles.output; 
  
  
  
function HCO3edit_Callback(hObject, eventdata, handles) 
% hObject    handle to HCO3edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% If the edit callback is activated this code will run. 
% 
% The string from the edit box is converted to a number then set to the 
% variable HCO3edit 
HCO3edit=str2double(get(handles.HCO3edit,'String')); 
% If this value from the string is not a number or is out of the value 
% range of the slider then an error display . 
if (isnan(HCO3edit)==1)||(HCO3edit > 
get(handles.HCO3slider,'Max'))||... 
        (HCO3edit < get(handles.HCO3slider,'Min')) 
        E=errordlg(... 
            sprintf('A numeric value within the range of \n0 to 50 
mEq/L of must be entered!',... 
            'HC03 Error')); %error display code 
        waitfor(E); % the error box will remain until closed 
        set(handles.HCO3edit,'String','24') % the value will be cahnged 
to a normal value 
        set(handles.HCO3slider,'Value',24) 
else % if the input data is a number with in the proper range then the 
value  
    %will set the slider value and location. 
set(handles.HCO3slider,'Value',HCO3edit) 
end 
  
% collects data from all sliders and calculates it 
data=gatherdata(handles); 
% takes the calculated data and updates the displays 
Update(handles,data); 
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function HCO3edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to HCO3edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function PCO2edit_Callback(hObject, eventdata, handles) 
% hObject    handle to PCO2edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% If the edit callback is activated this code will run. 
% 
% The string from the edit box is converted to a number then set to the 
% variable PCO2edit 
PCO2edit=str2double(get(handles.PCO2edit,'String')); 
% If this value from the string is not a number or is out of the value 
% range of the slider then an error display . 
if (isnan(PCO2edit)==1)||(PCO2edit > 
get(handles.PCO2slider,'Max'))||... 
        (PCO2edit < get(handles.PCO2slider,'Min')); 
        E=errordlg(... 
            sprintf('A numeric value within the range of \n10 to 80 
mmHg of must be entered!',... 
            'PCO2 Error')); 
        waitfor(E); 
        set(handles.PCO2edit,'String','40') 
        set(handles.PCO2slider,'Value',40) 
else% if the input data is a number with in the proper range then the 
value  
    %will set the slider value and location. 
set(handles.PCO2slider,'Value',PCO2edit) 
end 
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
% --- Executes during object creation, after setting all properties. 
function PCO2edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to PCO2edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function PO2edit_Callback(hObject, eventdata, handles) 
% hObject    handle to PO2edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% If the edit callback is activated this code will run. 
% 
% The string from the edit box is converted to a number then set to the 
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% variable PCO2edit 
PO2edit=str2double(get(handles.PO2edit,'String')); 
% If this value from the string is not a number or is out of the value 
% range of the slider then an error display . 
if (isnan(PO2edit)==1)||(PO2edit > get(handles.PO2slider,'Max'))||... 
        (PO2edit < get(handles.PO2slider,'Min')); 
        E=errordlg(... 
            sprintf('A numeric value within the range of \n20 to 500 
mmHg of must be entered!',... 
            'PO2 Error')); 
        waitfor(E); 
        set(handles.PO2edit,'String','300') 
        set(handles.PO2slider,'Value',300) 
else% if the input data is a number with in the proper range then the 
value  
    %will set the slider value and location. 
set(handles.PO2slider,'Value',PO2edit) 
end 
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
% --- Executes during object creation, after setting all properties. 
function PO2edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to PO2edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function Tempedit_Callback(hObject, eventdata, handles) 
% hObject    handle to Tempedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% If the edit callback is activated this code will run. 
% 
% The string from the edit box is converted to a number then set to the 
% variable Tempedit 
Tempedit=str2double(get(handles.Tempedit,'String')); 
% If this value from the string is not a number or is out of the value 
% range of the slider then an error display . 
if (isnan(Tempedit)==1)||(Tempedit > 
get(handles.Tempslider,'Max'))||... 
        (Tempedit < get(handles.Tempslider,'Min')); 
        E=errordlg(... 
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            sprintf('A numeric value within the range of \n15 to 40 C 
of must be entered!',... 
            'Temp Error')); 
        waitfor(E); 
        set(handles.Tempedit,'String','37') 
        set(handles.Tempslider,'Value',37) 
else % if the input data is a number with in the proper range then the 
value  
    %will set the slider value and location. 
set(handles.Tempslider,'Value',Tempedit) 
end 
  
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
% --- Executes during object creation, after setting all properties. 
function Tempedit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Tempedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function Hgbedit_Callback(hObject, eventdata, handles) 
% hObject    handle to Hgbedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% If the edit callback is activated this code will run. 
% 
% The string from the edit box is converted to a number then set to the 
% variable Hgbedit 
Hgbedit=str2double(get(handles.Hgbedit,'String')); 
% If this value from the string is not a number or is out of the value 
% range of the slider then an error display . 
if (isnan(Hgbedit)==1)||(Hgbedit > get(handles.Hgbslider,'Max'))||... 
        (Hgbedit < get(handles.Hgbslider,'Min')); 
        E=errordlg(... 
            sprintf('A numeric value within the range of \n5.6 to 12.6 
g/dL of must be entered!',... 
            'Hgb Error')); 
        waitfor(E); 
        set(handles.Hgbedit,'String','11') 
        set(handles.Hgbslider,'Value',11) 
else % if the input data is a number with in the proper range then the 
value  
    %will set the slider value and location. 
set(handles.Hgbslider,'Value',Hgbedit) 
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end 
  
  
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function Hgbedit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Hgbedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function VO2edit_Callback(hObject, eventdata, handles) 
% hObject    handle to VO2edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
VO2edit=str2double(get(handles.VO2edit,'String')); 
if (isnan(VO2edit)==1)||(VO2edit > get(handles.VO2slider,'Max'))||... 
        (VO2edit < get(handles.VO2slider,'Min')); 
        E=errordlg(... 
            sprintf('A numeric value within the range of \n10 to 400 
mL/min of must be entered!',... 
            'VO2 Error')); 
        waitfor(E); 
        set(handles.VO2edit,'String','150') 
        set(handles.VO2slider,'Value',150) 
else 
set(handles.VO2slider,'Value',VO2edit) 
end 
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function VO2edit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to VO2edit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function Kedit_Callback(hObject, eventdata, handles) 
% hObject    handle to Kedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
Kedit=str2double(get(handles.Kedit,'String')); 
if (isnan(Kedit)==1)||(Kedit > get(handles.Kslider,'Max'))||... 
        (Kedit < get(handles.Kslider,'Min')); 
        E=errordlg(... 
            sprintf('A numeric value within the range of \n1.0 to 9.9 
mmol/L of must be entered!',... 
            'K+ Error')); 
        waitfor(E); 
        set(handles.Kedit,'String','3.8') 
        set(handles.Kslider,'Value',3.8) 
else 
set(handles.VO2slider,'Value',Kedit) 
end 
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function Kedit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Kedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
  
function Qedit_Callback(hObject, eventdata, handles) 
% hObject    handle to Qedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
Qedit=str2double(get(handles.Qedit,'String')); 
if (isnan(Qedit)==1)||(Qedit > get(handles.Qslider,'Max'))||... 
        (Qedit < get(handles.Qslider,'Min')); 
        E=errordlg(... 
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            sprintf('A numeric value within the range of \n0 to 9.9 
L/min of must be entered!',... 
            'Flow Error')); 
        waitfor(E); 
        set(handles.Qedit,'String','4.0') 
        set(handles.Qslider,'Value',4.0) 
else 
set(handles.Qslider,'Value',Qedit) 
end 
  
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function Qedit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Qedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% SLIDERS 
% --- Executes on slider movement. 
function HCO3slider_Callback(hObject, eventdata, handles) 
% hObject    handle to HCO3slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.HCO3edit,'String',sprintf('%0.0f',get(handles.HCO3slider,'V
alue'))) 
  
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function HCO3slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to HCO3slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: slider controls usually have a light gray background. 
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if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on slider movement. 
function PCO2slider_Callback(hObject, eventdata, handles) 
% hObject    handle to PCO2slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.PCO2edit,'String',sprintf('%0.0f',get(handles.PCO2slider,'V
alue'))) 
  
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function PCO2slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to PCO2slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on slider movement. 
function PO2slider_Callback(hObject, eventdata, handles) 
% hObject    handle to PO2slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.PO2edit,'String',sprintf('%0.0f',get(handles.PO2slider,'Val
ue'))) 
  
  
data=gatherdata(handles); 
 %collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function PO2slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to PO2slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
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% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on slider movement. 
function Tempslider_Callback(hObject, eventdata, handles) 
% hObject    handle to Tempslider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.Tempedit,'String',sprintf('%0.1f',get(handles.Tempslider,'V
alue'))) 
  
data=gatherdata(handles); 
Update(handles,data); 
  
  
% --- Executes during object creation, after setting all properties. 
function Tempslider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Tempslider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on slider movement. 
function Hgbslider_Callback(hObject, eventdata, handles) 
% hObject    handle to Hgbslider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
set(handles.Hgbedit,'String',sprintf('%0.0f',get(handles.Hgbslider,'Val
ue'))) 
  
data=gatherdata(handles); 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function Hgbslider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Hgbslider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
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% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on slider movement. 
function VO2slider_Callback(hObject, eventdata, handles) 
% hObject    handle to VO2slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.VO2edit,'String',sprintf('%0.1f',get(handles.VO2slider,'Val
ue'))) 
  
data=gatherdata(handles); 
  
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
% --- Executes during object creation, after setting all properties. 
function VO2slider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to VO2slider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on slider movement. 
function Kslider_Callback(hObject, eventdata, handles) 
% hObject    handle to Kslider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.Kedit,'String',sprintf('%0.0f',get(handles.Kslider,'Value')
)) 
  
data=gatherdata(handles); %collects data from all sliders and 
calculates it 
Update(handles,data); 
  
  
  
% --- Executes during object creation, after setting all properties. 
function Kslider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Kslider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
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% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
% --- Executes on slider movement. 
function Qslider_Callback(hObject, eventdata, handles) 
% hObject    handle to Qslider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.Qedit,'String',sprintf('%0.1f',get(handles.Qslider,'Value')
)) 
  
data=gatherdata(handles); 
%data=gatherdata(handles); %collects data from all sliders and 
calculates it 
Update(handles,data); 
  
  
  
% --- Executes during object creation, after setting all properties. 
function Qslider_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Qslider (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
%% BUTTONS 
  
% --- Executes on button press in NVButton. 
function NVButton_Callback(hObject, eventdata, handles) 
% hObject    handle to NVButton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
set(handles.HCO3slider,'Value',24) 
set(handles.HCO3edit,'String','24') 
set(handles.PCO2slider,'Value',40) 
set(handles.PCO2edit,'String','40') 
set(handles.PO2slider,'Value',300) 
set(handles.PO2edit,'String','300') 
set(handles.Tempslider,'Value',37) 
set(handles.Tempedit,'String','37') 
set(handles.Hgbslider,'Value',11) 
set(handles.Hgbedit,'String','11') 
set(handles.VO2slider,'Value',150) 
set(handles.VO2edit,'String','150') 
set(handles.Kslider,'Value',4.0) 
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set(handles.HCO3edit,'String','4.0') 
set(handles.Qslider,'Value',4.1) 
set(handles.Qedit,'String','4.1') 
  
data=gatherdata(handles); 
  
Update(handles,data); 
  
  
  
  
  
% --- Executes on button press in RAButton. 
function RAButton_Callback(hObject, eventdata, handles) 
% hObject    handle to RAButton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
set(handles.HCO3slider,'Value',24) 
set(handles.HCO3edit,'String','24') 
set(handles.PCO2slider,'Value',60) 
set(handles.PCO2edit,'String','60') 
set(handles.PO2slider,'Value',100) 
set(handles.PO2edit,'String','100') 
set(handles.Tempslider,'Value',37) 
set(handles.Tempedit,'String','37') 
set(handles.Hgbslider,'Value',11) 
set(handles.Hgbedit,'String','11') 
set(handles.VO2slider,'Value',150) 
set(handles.VO2edit,'String','150') 
set(handles.Kslider,'Value',4.0) 
set(handles.HCO3edit,'String','4.0') 
set(handles.Qslider,'Value',4.1) 
set(handles.Qedit,'String','4.1') 
  
data=gatherdata(handles); 
  
Update(handles,data); 
  
  
  
% --- Executes on button press in RAKButton. 
function RAKButton_Callback(hObject, eventdata, handles) 
% hObject    handle to RAKButton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
set(handles.HCO3slider,'Value',24) 
set(handles.HCO3edit,'String','24') 
set(handles.PCO2slider,'Value',25) 
set(handles.PCO2edit,'String','25') 
set(handles.PO2slider,'Value',300) 
set(handles.PO2edit,'String','300') 
set(handles.Tempslider,'Value',37) 
set(handles.Tempedit,'String','37') 
set(handles.Hgbslider,'Value',11) 
set(handles.Hgbedit,'String','11') 



73 
 

 

set(handles.VO2slider,'Value',150) 
set(handles.VO2edit,'String','150') 
set(handles.Kslider,'Value',4.0) 
set(handles.HCO3edit,'String','4.0') 
set(handles.Qslider,'Value',4.1) 
set(handles.Qedit,'String','4.1') 
  
data=gatherdata(handles); 
Update(handles,data); 
  
  
% --- Executes on button press in MAButton. 
function MAButton_Callback(hObject, eventdata, handles) 
% hObject    handle to MAButton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
set(handles.HCO3slider,'Value',16) 
set(handles.HCO3edit,'String','16') 
set(handles.PCO2slider,'Value',40) 
set(handles.PCO2edit,'String','40') 
set(handles.PO2slider,'Value',300) 
set(handles.PO2edit,'String','300') 
set(handles.Tempslider,'Value',37) 
set(handles.Tempedit,'String','37') 
set(handles.Hgbslider,'Value',11) 
set(handles.Hgbedit,'String','11') 
set(handles.VO2slider,'Value',150) 
set(handles.VO2edit,'String','150') 
set(handles.Kslider,'Value',4.0) 
set(handles.HCO3edit,'String','4.0') 
set(handles.Qslider,'Value',4) 
set(handles.Qedit,'String','4.0') 
  
data=gatherdata(handles); 
Update(handles,data); 
  
  
  
% --- Executes on button press in MAKButton. 
function MAKButton_Callback(hObject, eventdata, handles) 
% hObject    handle to MAKButton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
set(handles.HCO3slider,'Value',34) 
set(handles.HCO3edit,'String','34') 
set(handles.PCO2slider,'Value',41) 
set(handles.PCO2edit,'String','41') 
set(handles.PO2slider,'Value',300) 
set(handles.PO2edit,'String','300') 
set(handles.Tempslider,'Value',37) 
set(handles.Tempedit,'String','37') 
set(handles.Hgbslider,'Value',11) 
set(handles.Hgbedit,'String','11') 
set(handles.VO2slider,'Value',150) 
set(handles.VO2edit,'String','150') 
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set(handles.Kslider,'Value',4.0) 
set(handles.HCO3edit,'String','4.0') 
set(handles.Qslider,'Value',4.1) 
set(handles.Qedit,'String','4.1') 
  
data=gatherdata(handles); 
Update(handles,data); 
  
  
function Update(handles,data) 
%the purpose of this function is to update the visible variables on the 
%control figure then call the update function for the display figure. 
The 
%UpdateDisplay function call back was saved in the gui data for CILBGM. 
THe 
%data adjusted and calculated variables are set with setappdata to the 
%CILBGM figure. They can be accessed  in the UpdateDisplay function. 
  
set(handles.HCTtext,'String',sprintf('%0.0f',data(9))) 
set(handles.pHtext,'String',sprintf('%0.2f',data(10))) 
set(handles.BEtext,'String',sprintf('%0.0f',data(11))) 
set(handles.SO2text,'String',sprintf('%0.0f',data(12))) 
set(handles.SVO2text,'String',sprintf('%0.0f',data(13))) 
  
  
Display = getappdata(0, 'Display'); 
UpdateDisplay = getappdata(Display, 'UpdateDisplay'); 
setappdata(Display,'data',data); 
  
if get(handles.BSARB,'Value') 
    setappdata(Display,'VO2units','mL/min/m^2'); 
else 
    setappdata(Display,'VO2units','mL/min'); 
end 
feval(UpdateDisplay); 
  
  
% --- Executes on button press in BSARB. 
function BSARB_Callback(hObject, eventdata, handles) 
% hObject    handle to BSARB (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
if get(hObject, 'Value') 
    Visibility = 'on'; 
    set(handles.VO2units,'String',sprintf('VO2\nmL/min/m^2')) 
    currentvalue=get(handles.VO2slider,'Value'); 
    max=get(handles.VO2slider,'Max'); 
    min=get(handles.VO2slider,'Min'); 
    BSA=str2double(get(handles.BSAedit,'String')); 
    newmax=max/BSA; 
    newvalue=currentvalue/BSA; 
    set(handles.VO2slider,'Value',newvalue,'Max',newmax,... 
        'SliderStep',[1/(newmax-min) 3/(newmax-min)]) 
    set(handles.VO2edit,'String',sprintf('%0.0f',newvalue)) 
else  
    Visibility = 'off'; 
    set(handles.VO2units,'String',sprintf('VO2\nmL/min')) 
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    currentvalue=get(handles.VO2slider,'Value'); 
    oldmax=get(handles.VO2slider,'Max'); 
    newvalue=400*currentvalue/oldmax; 
    set(handles.VO2slider,'Max',400,'SliderStep',[1/390 5/390],... 
        'Value',newvalue) 
    set(handles.VO2edit,'String',sprintf('%0.0f',newvalue)) 
end 
data=gatherdata(handles); 
set(handles.BSAedit,'Visible',Visibility) 
Update(handles,data) 
  
  
% Hint: get(hObject,'Value') returns toggle state of BSARB 
  
  
  
function BSAedit_Callback(hObject, eventdata, handles) 
% hObject    handle to BSAedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
if get(handles.BSARB, 'Value') 
    BSAedit=str2double(get(handles.BSAedit,'String')); 
    if isnan(BSAedit)==1 
        E=errordlg('A number must be entered!','BSA Error'); 
        waitfor(E); 
        set(handles.BSAedit,'String','2.0') 
    else 
        currentvalue=get(handles.VO2slider,'Value'); 
        oldmax=get(handles.VO2slider,'Max'); 
        min=10; 
        BSA=str2double(get(handles.BSAedit,'String')); 
        newmax=400/BSA; 
        newvalue=newmax*currentvalue/oldmax; 
        set(handles.VO2slider,'Value',newvalue,'Max',newmax,... 
            'SliderStep',[1/(newmax-min) 3/(newmax-min)]) 
        set(handles.VO2edit,'String',sprintf('%0.0f',newvalue)) 
    end 
data=gatherdata(handles); 
end 
%collects data from all sliders and calculates it 
Update(handles,data); 
  
  
  
  
% --- Executes during object creation, after setting all properties. 
function BSAedit_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to BSAedit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
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end 
  
set(hObject,'Visible','Off') 
 
 
gatherdata.m 

function [d]=gatherdata(handles) 
% the purpose of this function is to collect all the values from the 
% sliders and edit boxes to e used for calculations. 
  
d=[get(handles.HCO3slider,'Value');get(handles.PCO2slider,'Value');... 
    get(handles.PO2slider,'Value');get(handles.Tempslider,'Value');... 
    get(handles.Hgbslider,'Value');get(handles.VO2slider,'Value');... 
    get(handles.Kslider,'Value');get(handles.Qslider,'Value')]; 
  
d(9)=3*d(5); %HCT 
d(10)=6.1+log10(d(1)/(0.03*d(2))); %pH 
  
O2capacity=1.34*d(5); 
% The arterial saturation estimated from the PO2 
Sat=(((d(3)^(3)+150*d(3))^(-1)*23400)+1)^(-1);  %SaO2 
d(12)=Sat*100; 
  
d(11)=(1-0.0143*d(5))*((0.03*d(2)*10^(d(10)-6.1)-
24.26)+(9.5+1.63*d(5))... 
    *(d(10)-7.4))-0.2*d(5)*(1-Sat); %BE 
  
if get(handles.BSARB,'Value') 
    BSA=str2double(get(handles.BSAedit,'String')); 
    d(13)=((1.34*d(5)*Sat+0.003*d(3))-
((d(6)*BSA)/(d(8)*10)))/(1.34*d(5)+0.003*d(3))*100; 
else 
  d(13)=((1.34*d(5)*Sat+0.003*d(3))-
(d(6)/(d(8)*10)))/(1.34*d(5)+0.003*d(3))*100; %SVO2 
end 
  
  
  
% the Calculated oxygen content for arterial and venous blood 
%CaO2=((1.34*d(5)*SaO2)+(0.003*d(3))); 
%CvO2=((1.34*d(5)*(SVO2/100))+(0.003*d(3))); 
% the Venous Saturation 
  
  
% The data created is an 13x1 arrary with the following data: 
% 
%   d(1)= HCO3 value 
%   d(2)= PCO2 slider value 
%   d(3)= PO2 slider value 
%   d(4)= Temp slider Value 
%   d(5)= Hgb slider Value 
%   d(6)= VO2 slider Value 
%   d(7)= K slider value 
%   d(8)= Q slider value 
%   d(9)= HCT calculated value 
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%   d(10)= HCO3 calculated value 
%   d(11)= BE calculated Value 
%   d(12)= SaO2 calculated Value 
%   d(13)= SVO2 calculated Value 
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